Math 141 Schedule

Sections labeled A refer to

T. Apostol. Calculus volume 1, 2nd ed. John Wiley and Sons, 2007. Sections labeled R refer to

W. Rudin. Principles of Mathematical Analysis, 3rd ed. New York: McGraw Hill, 1964.

Date	Topics	Reading
M Aug 29.	Sets, the integers, induction, summation notation.	A.I.2.1–5, A.I.4.1–
		6
W Aug 31.	The rationals, $\sqrt{2}$ is irrational, field and order ax-	R.1.1, A.I.3.2,
	ioms, consequences of the l.u.b. property,.	A.I.3.5, A.I.3.7–13
M Sept 5.	No class – Labor day.	
W Sept 7.	Dedekind cuts, countability.	R.1.A, R.2.1
M Sept 12.	The complex numbers. Triangle and Cauchy-	A.9.1–5, A.I.4.8,
	Schwarz inequalities. Functions.	A.1.2–4
W Sept 14.	Area axioms, area calculation, definition of the	A.1.6–18
	integral.	
M Sept 19.	Integrable functions, computing integrals, basic	A.1.19–27
	properties.	
W Sept 21.	Applications of integrals, indefinite integrals.	A.2.1–2.11,
		A.2.16–19
M Sept 26.	Definition of limits and continuity, properties,	A.3.1-11
	composite fns, Intermediate Value Theorem.	
W Sept 28.	Midterm 1.	
M Oct 3.	Inverse functions, compactness properties and in-	A.3.12–20
	tegrability of cts fns.	
W Oct 5.	Further examples. Sperner's Lemma and the	
	Brouwer Fixed Point Theorem.	
M Oct 10.	Definition of derivative and interpretations, tak-	A.4.1–9
	ing derivatives.	
W Oct 12.	The chain rule and implicit differentiation.	A.4.10–12
M Oct 17.	The mean value theorem and extrema, Jensen's	A.4.13–21
	inequality.	

W Oct 19.	The Fundamental Theorem of Calculus.	A.5.1–5
M Oct 24.	Logs and exponentials and trig functions.	A.6.1–22
W Oct 26.	Integration by substitution and by parts.	A.5.7–11, A.6.23–
		25
M Oct 31.	Complex exponentials and trig identities, the	A.9.7, R.8.4
	Fund. Thm. of Algebra.	
W Nov 2.	Midterm 2.	
M Nov 7.	Taylor's formula, big O and little o, indeterminant	A.7.1–10
	forms.	
W Nov 9.	l'Hopital's rule and indeterminant forms.	A.7.11–15
M Nov 14.	Asymptotics of some standard functions, New-	A.7.16–17, R p118
	ton's method.	
W Nov 16.	First and second order constant coefficient ODE's.	A.8.1–14
M Nov 21.	Nonhomogeneous equations, geometric and phys-	A.8.15–28
	ical problems.	
W Nov 23.	No class – Thanksgiving.	
M Nov 28.	Infinite sequences and series, limits and proper-	A.10.1–9
	ties.	
W Nov 30.	Convergence tests.	A.10.12–22
M Dec 5.	Sequences of functions, integration and differenti-	A.11.1–7
	ation, power series.	
W Dec 7.	Taylor series, exponential and trig functions, dif-	A.11.8–16
	ferential equations.	