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Problem 1. Most of the examples are standard. (1) Substitution u = x2 + 1 and
partial fractions. (2) Integration by parts and substitution u = 5x. (3) Substitution
u = 1/x and integration by parts. (4) Use the double angle formula and substitution
u = 5/2 + (3/2) cos(2x). (5) Use the double angle formula and integrate by parts. (6)
Integrate by parts four times. (7) Factor x3−x = x(x−1)(x+1) and use partial fractions.

Let us discuss examples (8) and (9) in detail. In (8) we decompose∫
x√

x2 + x+ 1
dx =

1

2

∫
2x+ 1√
x2 + x+ 1

dx− 1

2

∫
1√

x2 + x+ 1
dx.

We compute each of the terms separately. For the first one we use the substitution
u = x2 + x+ 1. Then du = (2x+ 1)dx and∫

2x+ 1√
x2 + x+ 1

dx =

∫
u−1/2du = 2u1/2 + C = 2

√
x2 + x+ 1 + C.

The second term involves the integral∫
dx√

x2 + x+ 1
=

∫
dx√

(x+ 1/2)2 + 3/4
=

√
4

3

∫
dx√

(2
√

3x+ 1/
√

3)2 + 1
,

which we reduce to the integral
∫
du/
√
u2 + 1 = arcsinhu using the substitution u =

2
√

3x+ 1/
√

3.
Next, we compute integral (9). Denote it by In. We have I0 = 1. Now for a fixed T

integrating by parts yields∫ T

0
xne−xdx = (−xne−x)

∣∣T
0

+ n

∫ T

0
xn−1e−xdx = −Tne−T + n

∫ T

0
xn−1e−xdx.

Passing to the limit T →∞, we obtain

In = nIn−1,

which shows that In = n!I0 = n!.
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Problem 2. Let us only prove the inequality log(1 + x) < x for x > 0 as the other
ones are proved in almost the same way. Set f(x) = x − log(1 + x). It is a continuously
differentiable function on (0,∞). Its derivative

f ′(x) = 1− 1

1 + x

is strictly positive for x ∈ (0,∞). Thus, f is increasing on that interval. On the other
hand, limx→0+ f(x) = 0. We conclude that f(x) > 0 for all x > 0.

Problem 3. Denote

an =

[(
1 +

1

n

)
· · ·
(

1 +
n

n

)]1/n
and

Sn = log an =
1

n

n∑
i=1

log

(
1 +

1

n

)
.

Note that Sn is the n-th Riemann sum

Sn =
1

n

n∑
i=1

f

(
a+

i(b− a)

n

)
of the function f(x) = log x on the interval [a, b] = [1, 2]. Since f is continuous, we have

lim
n→∞

Sn =

∫ 2

1
log xdx = (x log x− x)|21 = 2 log 2− 1.

By the continuity of the function x 7→ ex,

lim
n→∞

an = lim
n→∞

elog an = elimn→∞ Sn = e2 log 2−1 = 4/e.

Problem 4. Using the Fundamental Theorem of Calculus, we compute∫ π

−π
eimxe−inxdx =

∫ π

−π
ei(m−n)xdx =

{
0 if m 6= n,

2π if m = n.
(1)

On the other hand, Euler’s formula implies that

eimxe−inx = {sin(mx) sin(nx) + cos(mx) cos(nx)}+i {sin(mx) cos(nx)− cos(mx) sin(nx)} .

Taking the real part of integral (1), we obtain∫ π

−π
sin(mx) sin(nx)dx+

∫ π

−π
cos(mx) cos(nx)dx =

{
0 if m 6= n,

2π if m = n.

On the other hand, integration by parts gives∫ π

−π
cos(mx) cos(nx)dx =

n

m

∫ π

−π
sin(mx) sin(nx)dx.
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Together with the previous computation, this yields(
1 +

n

m

)∫ π

−π
sin(mx) sin(nx)dx =

{
0 if m 6= n,

2π if m = n.

Which shows that the integral is zero if n 6= m and π if n = m. The integrals involving
mixed terms are computed in the same way, by looking at the imaginary part(1).

Problem 5. Suppose first that f is a step function, that is there exists a subinterval
[c, d] ⊂ [a, b] such that f is equal to one on [c, d] and zero otherwise. Then∫ b

a
f(x) sin(λx)dx =

∫ d

c
sin(λx)dx =

cos(λd)− cos(λc)

λ
.

Since | cosx| ≤ 1 for any x, the right-hand side converges to zero as λ → ∞. So the
statement is true when f is a step function. By the linearity of integrals and limits, it will
be also true when f is a finite sum of step functions. Now suppose that f is any integrable
function. Let ε > 0 be any positive number. We will show that for λ sufficiently large∣∣∣∣∫ b

a
f(x) sin(λx)dx

∣∣∣∣ < ε.

We have I(f) =
∫ b
a f = I(f). By the definition of I(f) as a supremum, there exists a step

function g : [a, b]→ R satisfying g ≤ f and∫ b

a
(f(x)− g(x))dx < ε/2.

Now for λ sufficiently large we have∫ b

a
f(x) sin(λx)dx =

∫ b

a
(f(x)− g(x)) sin(λx)dx+

∫ b

a
g(x) sin(λx)dx < ε/2 + ε/2 = ε,

where we have used the statement for g (which was already proved because g is a step
function) and inequality | sin(λx)| ≤ 1. Similarly we prove the lower bound

−ε <
∫ b

a
f(x) sin(λx)dx

by considering I(f) and a step function approximating f from above.

Problem 6. To simplify the notation, assume that the domain of f is a square [0, 1]×
[0, 1] rather than a disc (the proof is the same in the general case). Define F : [0, 1] → R
by F (x) = min{f(x, y) | y ∈ [0, 1]}. Note that this function is well defined. Indeed, for
every fixed x ∈ [0, 1] the function y 7→ f(x, y) is a continuous map from [0, 1] to R (it
follows directly from the definition of continuity for functions of two variables) and as such
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it attains its minimum. It remains to show that F is continuous. Choose any x0 ∈ [0, 1]
and ε > 0. We want to show that for x sufficiently close to x0 we have

|F (x)− F (x0)| < ε.

Now, any continuous function is uniformly continuous, see Lecture 7. The same proof
works for continuous functions of two variables. It follows that there exists δ > 0 such
that for all x satisfying |x− x0| < δ and for all y ∈ [0, 1] we have

|f(x, y)− f(x0, y)| < ε.

Now let x be as above and choose yx ∈ [0, 1] so that

F (x) = min{f(x, y) | y ∈ [0, 1]} = f(x, yx).

Similarly, choose y0 ∈ [0, 1] so that

F (x0) = min{f(x0, y) | y ∈ [0, 1]} = f(x0, y0).

Since F (x0) is the minimum, we have

F (x0) = f(x0, y0) ≤ f(x0, yx) < f(x, yx) + ε = F (x) + ε.

Likewise, since F (x) is the minimum,

F (x) = f(x, yx) ≤ f(x, y0) < f(x0, y0) + ε = F (x0) + ε,

which shows that |F (x) − F (x0)| < ε. This shows that F is continuous. In particular, it
attains its minimum on [0, 1]. Let xmin be this minimum. We want to show that F (xmin)
is the minimal value of f over the square [0, 1] × [0, 1]. Indeed, by the definition of xmin
and F , for any x and y in [0, 1] we have

F (xmin) ≤ F (x) ≤ f(x, y).
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