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Problem 1. Most of the examples are standard. (1) Substitution v = x? + 1 and

partial fractions. (2) Integration by parts and substitution v = 5z. (3) Substitution

u = 1/x and integration by parts. (4) Use the double angle formula and substitution

u = 5/2+ (3/2)cos(2z). (5) Use the double angle formula and integrate by parts. (6)

Integrate by parts four times. (7) Factor 2® —z = x(x —1)(z+1) and use partial fractions.
Let us discuss examples (8) and (9) in detail. In (8) we decompose

/ T d 1 2x +1 d 1/ 1 d
—  dr==- | ———dx — = | ——dx.
Vat+x+1 2) Vx4 +1 2) Vx4 +1

We compute each of the terms separately. For the first one we use the substitution
u =224+ 1. Then du = (2 + 1)dz and
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%dz = / w2y =2+ C =202+ a1+ C.
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The second term involves the integral

dx dx 4 do
/m:/\/(x+1/2)2+3/4:\[3/ \/(2\/§x+1/\/§)2+1’

which we reduce to the integral [du/vu?+1 = arcsinhu using the substitution u =
2v/3z +1/V/3.

Next, we compute integral (9). Denote it by I,,. We have Iy = 1. Now for a fixed T’
integrating by parts yields
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/ e fdx = (—:):"e_x)‘g + n/ e ey = —T"e T + n/ " e dx.
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Passing to the limit T"— oo, we obtain

I, =nly, 1,

which shows that I,, = nlly = nl.



Problem 2. Let us only prove the inequality log(l + =) < x for z > 0 as the other
ones are proved in almost the same way. Set f(x) = z — log(1 4+ z). It is a continuously
differentiable function on (0, c0). Its derivative

1
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is strictly positive for x € (0,00). Thus, f is increasing on that interval. On the other
hand, lim, ,o+ f(x) = 0. We conclude that f(z) > 0 for all z > 0.

1 n\ 1"
an = [<1+n>---<1+n)]
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Problem 3. Denote

and

Note that S, is the n-th Riemann sum
1 < i(b—a)
Sn =~ Z; f <a + = >

of the function f(z) = logz on the interval [a,b] = [1,2]. Since f is continuous, we have

2
lim Sn:/ log zdz = (zlogz — z)|? = 2log2 — 1.
1

n—oo
By the continuity of the function x — €%,

lim a, = lim 989 = elimnooo Sn — (2log2=1 _ 4 /¢

Problem 4. Using the Fundamental Theorem of Calculus, we compute

" IMx ,—IinT — " i(m—n)z _ 0 lfm#n,
/_We ¢ /_We da { o if m = n. (1)

On the other hand, Euler’s formula implies that

€M~ — fsin(ma) sin(nz) + cos(ma) cos(nx) }+i {sin(ma) cos(nz) — cos(ma) sin(nx)} .
Taking the real part of integral , we obtain

T . T 0 ifm#n,
/_7r sin(max) sin(nx)dx + /_7r cos(mx) cos(nx)dx = { or im e
On the other hand, integration by parts gives

/ cos(max) cos(nz)dr = % sin(mz) sin(nx)dz.
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Together with the previous computation, this yields

(1 + E) /TF sin(mzx) sin(nx)dr = { 2(; if m # n,

m/ J_. if m =n.

Which shows that the integral is zero if n % m and 7 if n = m. The integrals involving
mixed terms are computed in the same way, by looking at the imaginary part.

Problem 5. Suppose first that f is a step function, that is there exists a subinterval
[e,d] C [a,b] such that f is equal to one on [c,d] and zero otherwise. Then

’ d cos — cos(Ae
/a f(x)sin(A\x)dz :/c sin(A\r)dx = (Ad) - (A )

Since |cosz| < 1 for any x, the right-hand side converges to zero as A\ — oo. So the
statement is true when f is a step function. By the linearity of integrals and limits, it will
be also true when f is a finite sum of step functions. Now suppose that f is any integrable
function. Let € > 0 be any positive number. We will show that for A\ sufficiently large

< €.

/a (@) sin(Ax)da

We have I(f) = ff f =1(f). By the definition of I(f) as a supremum, there exists a step
function g: [a,b] — R satisfying g < f and

b
/ (f(2) - g(@))da < €/2.

Now for A sufficiently large we have

b b b
/ f(z)sin(A\z)dx = / (f(z) — g(x)) sin(Ax)dx +/ g(x)sin(Ax)dr < €/2+¢/2 =¢,

where we have used the statement for g (which was already proved because g is a step
function) and inequality |sin(Az)| < 1. Similarly we prove the lower bound

b
—€< / f(z) sin(A\x)dx
a
by considering I(f) and a step function approximating f from above.

Problem 6. To simplify the notation, assume that the domain of f is a square [0, 1] x
[0, 1] rather than a disc (the proof is the same in the general case). Define F': [0,1] — R
by F(z) = min{f(z,y) | y € [0,1]}. Note that this function is well defined. Indeed, for
every fixed z € [0,1] the function y — f(z,y) is a continuous map from [0, 1] to R (it
follows directly from the definition of continuity for functions of two variables) and as such



it attains its minimum. It remains to show that F' is continuous. Choose any zg € [0, 1]
and € > 0. We want to show that for = sufficiently close to zg we have

|F(x) = F(xo)| <e.

Now, any continuous function is uniformly continuous, see Lecture 7. The same proof
works for continuous functions of two variables. It follows that there exists § > 0 such
that for all = satisfying |z — 20| < 0 and for all y € [0, 1] we have

[f(z,y) = fzo,y)| < e
Now let x be as above and choose y, € [0, 1] so that
F(x) = min{f(z,y) | y € [0,1]} = f(z,5.).
Similarly, choose yo € [0, 1] so that
F(zo) = min{ f(z0,y) | y € [0, 1]} = f(z0,y0)-

Since F'(z¢) is the minimum, we have

F(zo) = f(zo,y0) < f(w0,y2) < f(2,y2) +€e=F(z) +e
Likewise, since F'(z) is the minimum,

F(z) = f(#,y2) < f(z,90) < fz0,90) + € = F(x0) + ¢,

which shows that |F(z) — F(x¢)| < e. This shows that F' is continuous. In particular, it
attains its minimum on [0, 1]. Let 2, be this minimum. We want to show that F'(z,iy)
is the minimal value of f over the square [0,1] x [0,1]. Indeed, by the definition of z,ip
and F, for any x and y in [0, 1] we have

F(zmin) < F(x) < f(z,y).



