Homework 6 solutions

Aleksander Doan

October 30, 2016

Problem 1. We have
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where we have used that polynomials are continuous functions.

Problem 2. By definition we have f: f(x)dx = I(f) = I(f). (See the slides from
Lecture 5 for definitions). Fix § > 0. Since I(f) is defined as the supremum of integrals of
step functions bounded above by f, there is a step function gy on [a,b] such that gg < f
and

/abf(x)d:c _ /ab go(x)dz < 6.

Likewise, from the definition of I(f) as an infimum, there is a step function hg on [a, b]
such that f < hg and

b b
/ ho(:n)d:x—/ flx)dx <.
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Taking the sum of the two inequalities above, we get
b b
/ ho(ac)da:—/ go(x)dx < 26.
a a
Moreover we have gy < f < hg. However, the proof is not finished since gy and hg are not

continuous. We claim that we can find continuous functions g and h on [a,b] such that
g§907h0§hand

/ab golz)dz — /abg(m)dx <4,

/abh(a:)dx - /ab ho(z)dz < 6.

Before proving the claim, let us see how it finishes the proof. Indeed, if such g and h can
be found, then by adding the two inequalities above we would obtain

/abh(a:)da: - /abg(fc)da: <20 + /ab ho(x)dz — /abgo(x)dx < 4.



Moreover we have g < go < f < hg < h. Therefore, after choosing 6 = €/4 the functions
g and h would have all the properties from the statement of the problem.
It remains to show that such g and h indeed exist. We discuss only the construction
of g as that of h is analogous. Assume first that [a,b] = [0,1] and go = v where u: R - R
denotes the function identically equal to one on [0,1] and 0 elsewhere. Then we can set
g = v where
x/d for z € [0, 9]
v(iz)=4q 1 for x € [6,1 — ¢],
(—x+1)/6 forxze[l—0,1]
We easily check that v is continuous. Note also that it can be extended to a continuous
function on all of R by setting v(x) = 0 outside [0,1]. (Draw its graph to see what this
function looks like!) Moreover, v < go = 1 and by computing areas under the graph we
see that

/Olu(x)dm—/olv(x)dx:1—(1—6):(5.

Now a general step function gg is of the form

N

go(z) = E Azu(a;z + b;)
i=1

for some real numbers a;, b;, and A;. Set

N

g(x) = Z Ajv(aiz + b;)

i=1
where v is the continuous function introduced earlier. We have g < gg as before and

N

N A,
/Rgo(x)dac - /Rg(:c)da: = ; A; /R(u(aiw +b;) —v(agz + b;))dr = (Z w) 0,

i=1 "
where the last equality is obtained from the substitution y = a;x+ b; and the computation

of fol (u — v). Thus, by making ¢ sufficiently small we can make [(go — g) as small as we
wish. This finishes the proof of the claim.

Problem 3. We need to show that for every ¢ > 0 there exists M such that for all

x > M we have N
1
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Let us estimate the expression on the left-hand side:
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Now limy_,o f(t) = a which means that for any § > 0 (to be determined later) there exists
N such that for t > N we have |f(t) — a| < d. Then for any z > N
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Since 1/x — 0 and (x — N)/xz — 1 as © — oo, keeping § and N fixed we can find M large
enough so that for all x > M the right-hand side of the inequality above is not greater
than § + 20, say. If we specify § at the beginning of the proof so that § < ¢/4, the number
5 + 20 is smaller than €, which proves the estimate .

Problem 4. As explained in class, a function f is convex if and only if for all 1 and xo

the expression
f(z1) = flz2)

R(xl,acg) = 71 — 73

is a non-decreasing function of x9 when z; is fixed or vice versa. (See also https://en.
wikipedia.org/wiki/Convex_function) Fix x; in the interior of the domain of f and
some interval (a,b) containing z;. Choose any z2 € (a,b). Without loss of generality
assume that x1 < z2. Then we have

R(z1,a) < R(z1,22) < R(21,),
or equivalently
(w2 — 1) R(21,0) < f22) = f(21) < (32 — 21) R(21, D).

Now when x7 is fixed and xo converges to x1 from the right, the left-most and right-most
sides of the inequality converge to zero. By the squeezing principle for limits, we have
therefore

lim f(z2) = f(z1).
$2—>:B1
Similarly we prove that lim SwT f(z2) = f(x1), which proves that f is continuous at x;.
The point x1 was arbitrary, so f is continuous at all interior points of its domain.

Problem 5. First, observe that we have a homeomorphism (0,1) — (1,00) given by
x — 1/z. TIts inverse is # + 1/x which is continuous. Now (1,00) and (0,00) are
homeomorphic via the translation = — = — 1 (whose inverse is © — x + 1). Finally, the
intervals (0, 00) and (—oo,00) are homeomorphic via logarithm z — logz whose inverse
is « +— €”, both continuous functions. Since the composition of two homeomorphisms is
also a homeomorphisms, composing the three functions

On the other hand, there is no homeomorphism (0,1) — [0, 1]. Indeed, the inverse
of such a homeomorphism would be a continuous bijection f: [0,1] — (0,1). But any
continuous function on [0, 1] attains its absolute maximum. Let a € [0,1] be such a
maximum, so that for every = € [0, 1] we have

f(z) <sup f = f(a).
[0,1]
Since f(a) € (0,1) we have f(a) < 1 and so f(z) < 1 for all z € [0,1]. This shows that
no point in the non-empty open interval (f(a), 1) lies in the image of f, which contradicts
the assumption that f is bijective (and thus in particular surjective).


https://en.wikipedia.org/wiki/Convex_function
https://en.wikipedia.org/wiki/Convex_function

Bonus problem 1. Write f(z) = apcosnz + ap—1 cos(n — 1)z + ... + ap. Notice that
cosnz takes value 1 at each point of the set {%}220. For z in this set,

f(z) > an — (Jan—1| + ... + |ag|) > 0.
n—1
Notice also that cosnx takes value —1 at {W}k o’ and thus for x in this set

f(x) < —an + (Jan-a] + ... + lao]) <0.

Since f is continuous, it changes sign twice, and hence has two zeros in each interval
< kr (k+D)m

T ), k=0,1,2,...,n — 1, which guarantees at least 2n zeros.

Bonus problem 2. For each 6 € R, define (z(6),y(0)) to be the point on the boundary
of the equilateral triangle which intersects the ray of angle 6 from the origin. For example
(2(0),4(0)) = (1,0). Let T(0) = \/x(0)? + y(0)? for the radial distance. On the segment
of the boundary of the triangle connecting (1,0) and (—1/2,v/3/2), that is, 0 < § < 2T,
T(6) may be determined as follows. The triangle with vertices A = (0,0), B = (1,0) and
C = (x(0),y()) has angles 6, % and 2F — §. Thus by sin laws,

To) 1 - 1
sin7/6  sin(57/6 —6)’ e T0)= 2sin(hr/6 — )

Similar expressions may be given on the remaining arcs. One easily checks that T'(6) is
continuous by connecting its values at 0, 27/3 and 47/3 from the left and right. The
maximum of 7(0) is 1, and the minimum is 3.

Define a map f from the disc to the triangle by f((0,0)) = (0,0) and, in polar coor-
dinates, f(r,6) = (T'(0)r,0) for r > 0. This map is linear on rays from the origin and is
evidently invertible, since 7'(f) # 0 so that the inverse map is given by (r,0) — (ﬁ, 0)
and (0,0) — (0,0). Continuity at the origin holds since 7'(#) is bounded above and below,
so that the distance of a point to the origin changes by at most a constant factor under f
or its inverse. Continuity at points other than the origin holds since 7'(6), ﬁ are contin-
uous and the transition between polar and cartesian coordinates is continuous (given by
the trig functions).

Bonus problem 3. One can construct a homeomorphism between the triangle and the
square in much the same way that the homeomorphism was constructed in the previous
bonus problem, by centering each on the origin and dilating along rays emanating from
the origin. We omit the details. Observe that the map

F(z,y) = (cos(siny), sin(cos z))

defines a continuous mapping from [0, 1] x [0,1] — [0,1] x [0, 1], and thus has a fixed
point, by the Brouwer Fixed Point Theorem. This solution is in fact the unique one, as
we now verify. [Note: one could avoid using the Brouwer Fixed Point Theorem for this



problem, since the problem can be reduced to a single variable equation by substituting
y = sin(cos z) and solving x = cos(sin(sin(cos z))).]
Define a sequence {(X,,Y,)}52, where each member of the sequence is a pair of

intervals defined by (Xo, Yy) = ((0,00), (0,00)) and, for n > 0, (X,,41, Yn+1) is given by
Xnt1 = {cos(siny) : y € Y, }, Y41 = {sin(cosx) : x € X, }.

The fact that each X,,, Y}, is an interval follows from the continuity of sin and cos. Let
X =Moo Xnand Y =(,2,Y,. The set of all fixed points is contained in X x Y. Notice
that both X and Y are intervals. This follows, since, if x1,z9 € X, then x1,2z2 € X,, for
all n, whence (z1,z2) C X, all n, so (z1,22) C X, and similarly Y.

Calculate explicitly, using 1 < § that

X1 = [cos1,1], Y1 = [—sinl,sin 1],
and, using that cos is even and decreasing on [0, 1] and sin is odd and increasing on [—1, 1],
X2 = [cos(sin(sin 1)), 1], Y2 = [sin(cos 1), sin(cos(cos 1))].

Thus X,, x Y;, C [0,1] x [0, 1] for all n > 2.

Now as maps [0,1] — [0, 1], both cos and sin are monotonic. It follows that if z € X
then z € X,, for all n, and there exists unique y € [0, 1] such that y € Y,, for all n and
cos(siny) = x. Similarly, if y € Y then there exists z € X such that y = sin(cos z). Thus

X C X' = {cos(sin(sin(cos(z')))) : 2’ € X}.
Notice that if X has endpoints 0 < a < b < 1 then X’ has endpoints at
cos(sin(sin(cos(a)))) < cos(sin(sin(cos(d)))).

Use, for x # y, |cosx — cosy| < |z —y| and |sinx —siny| < |z — y| to conclude that a = b.
Since X is a single point, so is Y.
The set of equations

(5 e 5) (5 oo )
= sin ( —cos — =sin ( - cos —
y=sin{gcoscr), z =sin (5 cos 5y
has solutions (1,0), (0,1), which are easily evident. Restricting to the diagonal z = y
produces the map f(z) = sin (5 cos Zz) which maps [0, 1] to itself, and thus has a further
fixed point xg, so that (zg, zo) is a solution of the original equation. There may be others,

I haven’t checked.



