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Problem 1. We use Euler’s formula eix = cosx+ i sinx. For example, in (8) we have

1− eπi/2

1 + eπi/2
=

1− i
1 + i

=
(1− i)2

(1 + i)(1− i)
=

1− 2i+ i2

1− i2
= −i.

Problem 2. You can plot the functions using https://www.wolframalpha.com/.
Just type ”polar plot” followed by the function that you want to plot. For example,
”polar plot sin x”. To compute the area enclosed by the graph of f = f(θ) from θ0 to
θ1, we need to compute the integral in polar cooordinates

A =

∫ θ1

θ0

f(θ)2dθ.

For example, in (6) we have

A =

∫ 2π

0
(1 + cos θ)2dθ =

∫ 2π

0
(1 + 2 cos θ + cos2 θ)dθ.

Observe that ∫ 2π

0
1dθ = 2π.∫ 2π

0
2 cos θdθ = 2 sin(2π)− 2 sin(0) = 0.

As regards the last integral, we use the double angle formula:∫ 2π

0
cos2 θdθ =

1

2

∫ 2π

0
(1 + cos(2θ))dθ = π +

1

2

∫ 2π

0
cos(2θ)dθ

= π +
1

4

∫ 4π

0
cosudu = π +

1

4
sin(4π)− 1

4
sin(0) = π,

where in the second line we have used the substitution u = 2θ. We conclude that
A = 3π. The other examples are similar.
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Problem 3. Let

f(x) =

√
1 +
√
x.

Note that f is strictly increasing on [0, 9] and f(0) = 1, f(9) = 2, therefore there is an
inverse function g : [1, 2]→ [0, 9]. Instead of computing the integral of f over [0, 9], we
will compute the integral of g over [1, 2]. The two are related by∫ 9

0
f(x)dx+

∫ 2

1
g(y)dy = 9× 2 = 18.

(Draw a picture to illustrate this!) In order to find g = f−1 we solve f(x) = y for x.

y =

√
1 +
√
x,

y2 − 1 =
√
x,

(y2 − 1)2 = x.

So g(y) = (y2 − 1)2 is the inverse of f . We compute∫ 2

1
g(y)dy =

∫ 2

1
(y4 − 2y2 + 1)dy =

[
1

5
y5 − 2

3
y3 + y

]2
1

=
38

15
.

Therefore, ∫ 9

0
f(x)dx = 18−

∫ 2

1
g(t)dy = 18− 38

15
=

232

15
.

Problem 4. The integral in question is the sum of two integrals∫ 2

−2
x
√

4− x2dx− 3

∫ 2

−2

√
4− x2dx.

The first one is zero because the function f(x) = x
√

4− x2 is odd (that is, f(−x) =
−f(x)), and we integrate it over an interval symmetric with respect to 0. To compute
the second integral, we observe that the equation of the circle of radius 2 and centre
at (0, 0) is

x2 + y2 = 4,

so the graph of the function y =
√

4− x2 is the upper-half circle. Its area is 2π (since
the radius is 2 and the area of the entire circle is 4π), so∫ 2

−2

√
4− x2dx = 2π.

Using the previous computation we obtain∫ 2

−2
(x− 3)

√
4− x2dx = −6π.
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Problem 5. The average value of sinx over [0, π/2] is

1

π/2

∫ π/2

0
sinxdx =

2

π
(− cos(π/2) + cos(0)) =

2

π
.

For sin2 x we proceed in the same way as in the solution to Problem 1 (where we
integrated cos2 x), using the double angle formula and substitution u = 2x.

Problem 6. Let us discuss only example (4) as the others are similar. The total
mass of the rod is

m =

∫ L

0
ρ(x)dx =

∫ L/2

0
xdx+

∫ L

L/2

L

2
dx =

1

2
(L/2)2 + (L/2)2 =

3

8
L2.

The centre of mass is

xc =

∫ L
0 xρ(x)dx

m
=

1

m

{∫ L/2

0
x2dx+

∫ L

L/2

L

2
xdx

}

=
1

m

{
1

3
(L/2)3 +

L

4
(L2 − (L/2)2)

}
=

11/48L3

3/8L2
=

11

18
L.

The moment of inertia is

I =

∫ L

0
x2ρ(x)dx =

∫ L/2

0
x3dx+

∫ L

L/2

L

2
x2dx

=
1

4
(L/2)4 +

L

6
(L3 − (L/2)3) =

31

192
L4.

Finally, the radius of gyration is

r2 =
I

m
=

31

72
L2.

Problem 7. Consider the function g : [a, b] → R given by g(x) = f(x) − x. It is
continuous as the sum of two continuous functions. We have

g(a) = f(a)− a ≥ 0 and g(b) = f(b)− b ≤ 0

because f(a) and f(b) belong to the interval [a, b]. By the intermediate value theorem,
there exists c ∈ [a, b] such that g(c) = 0. But this is equivalent to f(c) = c.

Problem 8. Let x be any real number. For every natural number n the open interval
(x − 1

n , x + 1
n) contains a point of A because A is dense. Choose any such point and

call it xn. Since |x− xn| < 1
n , we have limn→∞ xn = x. Since all of xn belong to A, we

have f(xn) = 0 for all n. On the other hand, f is continuous at x, so

f(x) = lim
n→∞

f(xn) = 0.

Since x was chosen arbitrarily, we have f = 0 everywhere.
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Bonus problem 1. Let α = sup{x ∈ [0, 1] : f(x) > 0}. We claim f(α) = 0. Suppose
otherwise. Since g is continuous at α, there is δ > 0 such that x ∈ [0, 1] and |x−α| < δ

implies |g(x)− g(α)| < |f(α)|
2 . Suppose first that f(α) > 0. Then α < 1. It follows that

for some α < x ≤ min(α+ δ, 1), f(x) ≤ 0, and thus

f(x) + g(x) ≤ g(x) ≤ g(α) + |g(x)− g(α)| ≤ g(α) +
f(α)

2
< g(α) + f(α).

This contradicts the fact that f + g is non-decreasing. Suppose instead that f(α) < 0.
Then α > 0 and so (by the supremum property) there exists x, max(0, α− δ) < x < α
for which f(x) > 0. Check that

f(x) + g(x) ≥ g(x) ≥ g(α)− |g(x)− g(α)| ≥ g(α) +
f(α)

2
> g(α) + f(α)

which again contradicts the fact that f + g is non-decreasing.

Bonus problem 2. As a lower step function, take the constant function 0, which
has integral 0. Note that for each n ≥ 1 there are no more than n2 reduced fractions
p
q , 0 ≤ p < q with denominator at most n. Define upper step functions sn(x) which

take value 1 if
∣∣∣x− p

q

∣∣∣ < 1
2n3 for some 1 ≤ q ≤ n, 0 ≤ p < q, sn(1) = 1 and take value

1
n otherwise. Notice that g(x) ≤ sn(x) for each n. Also,∫ 1

0
sn(x)dx ≤

∫ 1

0

dx

n
+
∑

1≤q≤n

∑
0≤p<q

∫ p
q
+ 1

2n3

p
q
− 1

2n3

dx ≤ 1

n
+
n2

n3
=

2

n
.

Letting n→∞ proves that g is integrable with integral 0.
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