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Problem 1. First we show that a−1 > 0. Indeed, suppose by contradic-
tion that a−1 ≤ 0. Since a 6= 0, that would imply a−1 < 0. Then after
multiplying both sides by a we would have 1 = aa−1 < 0 which is a contra-
diction. (In any ordered field we must have 1 > 0: prove it!) This shows that
a−1 > 0 and likewise b−1 > 0, so a−1b−1 > 0. Multiplying the inequality

0 < a < b

by a−1b−1 we obtain
0 < b−1 < a−1

as desired.

Problem 2. If n is the product of primes, then so is −n, so it is enough
to prove the statement for positive integers. For n > 1 let P (n) be the
statement: n is either prime or the product of primes. We prove the state-
ment by (generalised) induction. Clearly P (2) is true because 2 is prime.
Suppose now that P (k) holds for all 2 ≤ k ≤ n. We want to conclude that
P (n + 1) holds. If n + 1 is prime, then the statement holds. On the other
hand, if n + 1 is not prime, then by definition there are divisors c,d such
that 1 < c < n + 1, 1 < d < n + 1 and n + 1 = cd. By the induction
hypothesis, both c and d are the products of primes. Therefore, n + 1 = cd
is also the product of primes, which proves that P (n + 1) holds. By the
induction principle, P (n) holds for all n.

Problem 3. Let x ∈ A and y ∈ B. Then

x + y ≤ sup(A) + sup(B).

Since the inequality holds for all such x and y it follows by the definition of
sup(A + B) as the lowest upper bound that

sup(A + B) ≤ sup(A) + sup(B).
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To show that sup(A+B) = sup(A) + sup(B) it remains to prove the reverse
inequality. Fix x ∈ A. Since sup(A + B) is an upper bound for elements of
A + B, for any y ∈ B we have

x + y ≤ sup(A + B),

or equivalently
y ≤ sup(A + B)− x.

This inequality holds for all y ∈ B so we conclude that

sup(B) ≤ sup(A + B)− x,

or equivalently
x ≤ sup(A + B)− sup(B).

But x ∈ A was chosen arbitrarily so this inequality is true for all such x.
Therefore,

sup(A) ≤ sup(A + B)− sup(B),

or equivalently
sup(A) + sup(B) ≤ sup(A + B),

which finishes the proof.

Problem 4. First we prove that f(01) = 02. We have

f(01) + f(01) = f(01 + 01) = f(01)

so after subtracting f(01) from both sides we get f(01) = 02. Now we prove
that f(11) = 12. First of all, observe that f(11) 6= 02. Indeed, we already
know that f(01) = 02 and f is injective. Since f(11) 6= 02, there exists an
inverse f(11)

−1. Consider the equality

f(11)f(11) = f(11 · 11) = f(11).

Multiplying both sides by f(11)
−1 we get f(11) = 12 as desired. Next, we

prove the remaining properties of f . For any x ∈ F1 we have

f(−x) + f(x) = f(x− x) = f(01) = 02

so after subtracting f(x) from both sides we get f(−x) = −f(x). If we also
have x 6= 01 then f(x) 6= 02 since, as before, f(01) = 02 and f is injective.
Then

f(x−1)f(x) = f(x−1x) = f(11) = 12

and multiplying both sides by f(x)−1 we get f(x−1) = f(x)−1.
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Problem 5. We prove the formula by induction on n. For n = 1 we have

1∑
k=0

(
1

k

)
akb1−k =

(
1

0

)
a +

(
1

1

)
b = a + b,

so the statement is true. Assume that the statement holds for some n ≥ 1.
In order to prove it for n + 1 we compute

(a + b)n+1 = (a + b)(a + b)n = (a + b)
n∑

k=0

(
n

k

)
akbn−k

=

n∑
k=0

(
n

k

)
ak+1bn−k +

n∑
k=0

(
n

k

)
akbn+1−k

=

n+1∑
k=1

(
n

k − 1

)
akbn+1−k +

n∑
k=0

(
n

k

)
akbn+1−k

where in the last passage we just changed numbering by replacing k by k+1.
Now split the term k = n + 1 from the first sum and the term k = 0 from
the second sum to obtain

(a + b)n+1 =

(
n

n

)
an+1b0 +

n∑
k=1

(
n

k − 1

)
akbn+1−k +

n∑
k=1

(
n

k

)
akbn+1−k +

(
n

0

)
a0bn+1

= a0bn+1 +
n∑

k=1

{(
n

k − 1

)
akbn+1−k +

(
n

k

)
akbn+1−k

}
+ an+1b0.

Using the identity from the hint, we arrive at

(a + b)n+1 = a0bn+1 +
n∑

k=1

(
n + 1

k

)
akbn+1−k + an+1b0

=

n+1∑
k=0

(
n + 1

k

)
akbn+1−k,

which proves that the statement is true for n+1. By the induction principle,
it holds for all n ≥ 1.

Bonus problem. Multiplying both sides by b, the claimed inequality may
be written in the equivalent form∣∣∣b√2− a

∣∣∣ ≥ 1

2b
√

2 + 1
. (1)
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Note that (1) is trivial if a >
⌈
b
√

2
⌉
, since in this case, the LHS is greater

than 1, while the RHS is less than 1, so assume that a ≤
⌈
b
√

2
⌉
≤ b
√

2 + 1.
Now ∣∣2b2 − a2

∣∣ =
∣∣∣b√2 + a

∣∣∣ ∣∣∣b√2− a
∣∣∣ .

The left hand side is an integer and is not 0, since
√

2 6∈ Q, hence is at least
1. It follows that ∣∣∣b√2− a

∣∣∣ ≥ 1

b
√

2 + a
≥ 1

2b
√

2 + 1
,

as desired.
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