Homework 1 solutions

Aleksander Doan

September 26, 2016

Problem 1. An element $x \in X$ is in $(A \cap B)^c$ if and only if $x \notin A \cap B$. This is equivalent to: $x \notin A$ or $x \notin B$, which in turn is equivalent to $x \in A^c \cup B^c$. This shows that $(A \cap B)^c = A^c \cup B^c$. The second equality is proved in a similar way.

In what follows we adopt the convention that \mathbb{N} does not contain zero.

Problem 2. Fix $n \in \mathbb{N} \cup \{0\}$. From assumptions (1), (2), (3), and the induction principle it follows that P(n + k, k) is true for all $k \in \mathbb{N} \cup \{0\}$. Likewise, for any $m \in \mathbb{N} \cup \{0\}$ the statement P(k, m + k) is true. Now let (n, m) be arbitrary. By the trichotomy law, we have $n \leq m$ or $m \leq n$. Without loss of generality assume that the first holds. Then by definition there exists $k \in \mathbb{N} \cup \{0\}$ such that n + k = m. Then P(n, m) is the same as P(n, n + k) which we have already proved to be true.

Problem 3. (Recall: a < b if and only if there exists $c \in \mathbb{N}$ such that a + c = b.) First we check that th three relations m = n, m < n, m > n are mutually exclusive. Indeed, if m > n or m < n then by definition $m \neq n$. On the other hand, suppose by contradiction that m > n and n < m. Then m = n + c and n = m + d for some $c, d \in \mathbb{N}$. Then we would get m = n + c = m + c + d which leads to a contradiction since $c + d \neq 0$. This shows that if one alternative holds, then the other cannot hold.

For $n \in \mathbb{N} \cup \{0\}$ denote by P(n) be the statement: for any $m \in \mathbb{N} \cup \{0\}$ we have m = n or m < n or n < m. We prove by induction with respect to n that P(n) holds for all n. First we check that P(0) is true. For every mwe either have m = 0 or $m \neq 0$. If the latter is true, then m > 0 because 0 = 0 + m. Therefore P(0) is true. Now suppose that P(n) holds for some n. Let $m \in \mathbb{N} \cup \{0\}$. By the induction hypothesis, there are two possibilities. First is that $m \leq n$. Then $m \leq n < n + 1$. Second is that m > n. Then there exists $c \in \mathbb{N}$ such that n + c = m. Now, since $c \neq 0$ the axiom of induction implies that c = d + 1 for some $d \in \mathbb{N} \cup \{0\}$. Thus (n+1) + d = m which shows that $m \geq n + 1$. Therefore, we proved that in all cases either m = n + 1 or m < n + 1 or m > n + 1, which is exactly the statement P(n + 1).

Problem 4. For $n \ge 1$ denote by P(n) denote the equality from the problem. We prove that P(n) is true by induction. First, P(1) is equivalent to 2-1=1 which is clearly true. Suppose that P(n) is true for some $n \ge 1$. Then we get

$$(n+1)^2 = n^2 + 2n + 1 = \sum_{i=1}^n (2i-1) + (2(n+1)-1) = \sum_{i=1}^{n+1} (2i-1),$$

which proves that P(n+1) is true.

Problem 5. First we show that such a decomposition is unique. Indeed, suppose that for some other q' and r' with $0 \le r' < b$ we have

$$n = qb + r = q'b + r'.$$

Then

$$(q-q')b = r'-r$$

which shows that b divides r' - r. Since -b < r' - r < b this is possible only if r' - r = 0 or equivalently r' = r. Then (q - q')b = 0 and since b > 0 we must have q = q'. Thus, (q, r) = (q', r') and the decomposition is unique.

It remains to prove that such a decomposition exists for every positive n. We prove this by induction. First, let n = 1. If b = 1 then we take q = 1 and r = 0. If b > 1, then we take q = 0 and r = 1. So the statement is true for n = 1. Assume now that it is true for some $n \ge 1$. That is, we have

$$n = qb + r.$$

Then

$$n+1 = qb + r + 1$$

Since r < b we have $r + 1 \le b$. There are two cases. If r + 1 = b, then

$$n+1 = qb + b = (q+1)b$$

which gives us the desired decomposition. On the other hand, if r + 1 < b, then n + 1 = qb + (r + 1) is already of the desired form. This proves that the statement is true for n + 1.

Bonus problem The proof is by induction on the number of lines.

Base case (no lines drawn): Color the Euclidean plane either red or blue. There are no adjacent regions to produce a conflict.

Inductive step: Let $n \geq 0$ and assume that for any configuration of n lines, the resulting regions may be colored so that no two adjacent regions have the same color. Now suppose that n + 1 lines have been drawn. Hide one line ℓ and perform a legal coloring C on the regions produced by the remaining n lines. Now observe that ℓ splits Euclidean space into two halfplanes P_1 and P_2 , splitting some regions produced by the other n lines. In all regions that belong to P_2 , reverse the color from C, while in all regions that belong to P_1 leave the color the same. In the subdivision of space produced by the n + 1 lines, if two neighboring regions are on the same side of ℓ then they have opposite colors by the inductive assumption. If they are on opposite sides of ℓ , then to be neighbors they must have a segment of ℓ in common on their boundary. It follows that the two regions were the same region prior to drawing ℓ , hence had the same color prior to the recoloring, and now have opposite colors.