MATH 141, FALL 2016, HW8

DUE IN SECTION, OCTOBER 25

Problem 1. (27 pts) Perform the following integrals

- (1) $\int \frac{dx}{x(x^2+1)^2}$ (2) $\int (2+3x) \sin 5x dx$ (3) $\int_1^2 x^{-2} \sin \frac{1}{x} dx$ (4) $\int \sqrt{1+3\cos^2 x} \sin 2x dx$ (5) $\int x^2 \sin^2 x dx$ (6) $\int_0^1 x^4 (1-x)^{20} dx$ (7) $\int \frac{dx}{x^3-x}$ (8) $\int \frac{x}{\sqrt{x^2+x+1}} dx$.
- (9) For natural numbers n, $\int_0^\infty x^n e^{-x} dx$ (the improper integral \int_0^∞ means take \int_0^T and let the upper limit $T \to \infty$).

Problem 2. Show that for x > 0, $\frac{x}{1+x} < \log(1+x) < x$ and for all $x \neq 0$, $e^x > 1 + x$.

Problem 3. Evaluate $\lim_{n\to\infty} \left[\left(1+\frac{1}{n}\right) \left(1+\frac{2}{n}\right) \cdots \left(1+\frac{n}{n}\right) \right]^{\frac{1}{n}}$.

Problem 4. Prove that if m and n are integers, then

$$\int_{-\pi}^{\pi} \sin mx \sin nx dx = \begin{cases} 0, & m \neq n \\ \pi, & m = n, \end{cases}$$
$$\int_{-\pi}^{\pi} \cos mx \cos nx dx = \begin{cases} 0, & m \neq n \\ \pi, & m = n, \end{cases}$$
$$\int_{-\pi}^{\pi} \sin mx \cos nx dx = 0.$$

Problem 5. (Riemann-Lebesgue lemma) Let f be integrable on [a, b]. Prove that

$$\lim_{\lambda \to \infty} \int_{a}^{b} f(x) \sin \lambda x dx = 0.$$

(Hint: approximate f with a step function.)

Problem 6. Let $f : \mathbb{C} \to \mathbb{R}$ be a continuous function, that is, for each $z \in \mathbb{C}$ and each $\epsilon > 0$ there is a $\delta > 0$ such that if w is a complex number and $|w - z| < \delta$, then $|f(w) - f(z)| < \epsilon$. Let R > 0. Prove that f is bounded below on $B_R(0) = \{z \in \mathbb{C} : |z| \le R\}$, and achieves its minimum on this set, by completing the following steps.

- (1) For real $x, |x| \leq R$, show that f(x + iy) is continuous as a function of the real variable y, and hence f(x + iy) achieves its minimum on the set $\{y : |x + iy| \leq R\}$.
- (2) Define $F(x) = \min\{f(x + iy) : |x + iy| \le R\}$. Show that F(x) is continuous on [-R, R], and hence achieves its minimum on this set. Check that this minimum is the minimum of f on $B_R(0)$.

Bonus Problem. Let f be an increasing function on $[0, 2\pi]$. Prove the bound, for each $n \ge 1$,

$$\left|\int_{0}^{2\pi} f(x)\cos nx dx\right| \le \frac{f(2\pi) - f(0)}{n}$$

Bonus Problem. Let p and q be positive real numbers such that

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Prove the following statements.

(1) If $u \ge 0$ and $v \ge 0$, then

$$uv \le \frac{u^p}{p} + \frac{v^q}{q}.$$

Equality holds if and only if $u^p = v^q$.

(2) If $f \ge 0$ and $g \ge 0$ are integrable on [a, b], and

$$\int_a^b f^p = 1 = \int_a^b g^q,$$

then fg is integrable and

$$\int_{a}^{b} fg \le 1.$$

(3) Hölder's inequality: If f and g are integrable on [a, b], then

$$\left|\int_{a}^{b} fg\right| \leq \left(\int_{a}^{b} |f|^{p}\right)^{\frac{1}{p}} \left(\int_{a}^{b} |g|^{q}\right)^{\frac{1}{q}}.$$