MATH 141, FALL 2016, HW5

DUE IN SECTION, OCTOBER 4

Problem 1. Express each of the following complex numbers in the form a + bi.

(1) $e^{\pi i/2}$ (2) $2e^{-\pi i/2}$ (3) $3e^{\pi i}$ (4) $-e^{-\pi i}$ (5) $i + e^{2\pi i}$ (6) $e^{\pi i/4}$ (7) $e^{\pi i/4} - e^{-\pi i/4}$ (8) $\frac{1-e^{\pi i/2}}{1+e^{\pi i/2}}$

Problem 2. For each of the following functions, sketch the graph of f in polar coordinates and compute the area of the radial set over the interval specified.

- (1) Spiral of Archimedes: $f(\theta) = \theta, \ 0 \le \theta \le 2\pi$
- (2) Circle tangent to y-axis: $f(\theta) = 2\cos\theta, -\pi/2 \le \theta \le \pi/2$
- (3) Rose petal: $f(\theta) = \sin 2\theta, \ 0 \le \theta \le \pi/2$
- (4) Four-leaved rose: $f(\theta) = |\sin 2\theta|, \ 0 \le \theta \le 2\pi$
- (5) Lazy eight: $f(\theta) = \sqrt{|\cos \theta|}, \ 0 \le \theta \le 2\pi$
- (6) Cardioid: $f(\theta) = 1 + \cos \theta, \ 0 \le \theta \le 2\pi$.

Problem 3. Compute the integral

$$\int_0^9 \sqrt{1 + \sqrt{x}} dx.$$

Problem 4. We have defined π to be the area of a unit circular disk. Calculate in terms of π

$$\int_{-2}^{2} (x-3)\sqrt{4-x^2} dx$$

Problem 5. Calculate the average values of $\sin x$ and $\sin^2 x$ over the interval $[0, \pi/2]$.

Problem 6. Consider a rod of length L placed on the non-negative x-axis with one end at the origin. For each of the following mass-distributions ρ of the rod, determine the center of mass, moment of inertia and radius of gyration.

(1)
$$\rho(x) = 1$$
 for $0 \le x \le L$

(2)
$$\rho(x) = 1$$
 for $0 \le x \le \frac{L}{2}$, $\rho(x) = 2$ for $\frac{L}{2} < x \le L$

(3) $\rho(x) = x$ for $0 \le x \le L$

(4) $\rho(x) = x$ for $0 \le x \le \frac{L}{2}$, $\rho(x) = \frac{L}{2}$ for $\frac{L}{2} \le x \le L$.

Note: for these definitions, see Apostol pp. 118-119, or the slides from Lecture 6, which have been updated.

Problem 7. Let $f : [a, b] \to [a, b]$ be continuous. Show that there exists $x \in [a, b]$ solving f(x) = x.

Problem 8. A set A of real numbers is dense if every open interval contains a point of A. Show that if f is continuous and f(x) = 0 for all x in a dense set of points, then f(x) = 0 for all x.

Bonus Problem. Let f(0) > 0 and f(1) < 0. Furthermore, assume that there exists a continuous function g on [0, 1] such that f+g is non-decreasing. Prove that there exists $x \in (0, 1)$ with f(x) = 0.

Bonus Problem. Define g(x) on [0,1] by g(x) = 0 if x is irrational, and for rational $x = \frac{p}{q}$, q > 0 in lowest terms, $g(x) = \frac{1}{q}$. Show that g is Riemann integrable and $\int_0^1 g(x) dx = 0$.