MATH 141, FALL 2016, HW4

DUE IN SECTION, SEPTEMBER 22

Problem 1. Let x be a real number such that $0 \le x < h$ for every positive real number h. Prove that x = 0.

Problem 2. If $x_1, ..., x_n$ are positive real numbers and $y_k = \frac{1}{x_k}$, prove that

$$\left(\sum_{k=1}^n x_k\right) \left(\sum_{k=1}^n y_k\right) \ge n^2.$$

Problem 3. Prove the triangle inequality for \mathbb{C} : if w and z are complex numbers then

$$|w+z| \le |w| + |z|.$$

Problem 4. Let f be an integrable function on [a, b]. Using Theorems stated or proved in class, derive the formula

$$\int_{a}^{b} f(x)dx = (b-a)\int_{0}^{1} f[a+(b-a)x]dx.$$

Problem 5. (1) Let p be a positive integer. Prove that

$$b^{p} - a^{p} = (b - a)(b^{p-1} + b^{p-2}a + b^{p-3}a^{2} + \dots + ba^{p-2} + a^{p-1}).$$

(2) Let p and n denote positive integers. Use the first part to show that

$$n^p < \frac{(n+1)^{p+1} - n^{p+1}}{p+1} < (n+1)^p.$$

(3) Use induction to prove that

$$\sum_{k=1}^{n-1} k^p < \frac{n^{p+1}}{p+1} < \sum_{k=1}^n k^p.$$

Bonus Problem. Given $S \subset \mathbb{Z}_{>0}$, denote its cardinality by |S|, so |S| is the number of elements of S if S is finite, or $|S| = \infty$ otherwise. Let $S_1, S_2, ..., S_n \subset \mathbb{Z}_{>0}$ be finite subsets. Prove the inclusion-exclusion formula

$$\left| \bigcup_{i=1}^{n} S_{i} \right| = \sum_{j=1}^{n} (-1)^{j+1} \sum_{1 \le i_{1} < i_{2} < \dots < i_{j} \le n} \left| S_{i_{1}} \cap \dots \cap S_{i_{j}} \right|.$$

Bonus Problem. Let $n \ge 2$ be an integer, and set $\zeta_k = \cos \frac{2\pi k}{n} + i \sin \frac{2\pi k}{n}$. Prove that, for any $1 \le j < n$,

$$\sum_{1 \le k_1 < k_2 < \dots < k_j \le n} \zeta_{k_1} \cdots \zeta_{k_j} = 0, \qquad \prod_{k=1}^n \zeta_k = (-1)^{n+1}$$

and

$$\prod_{k=1}^{n} (1+\zeta_k) = 1 - (-1)^n, \qquad \prod_{k=1}^{n-1} (1-\zeta_k) = n.$$