
MATH 141, FALL 2016, HW11

DUE IN SECTION, NOVEMBER 22

Problem 1. (20 points) Justify that the following series converge and have
the given value.
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Problem 2. Prove that the following sequence converges and find its limit:
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(Hint: first guess the limit.)

Problem 3. Prove that the sequence defined by
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converges. The limit, usually denoted γ, is Euler’s constant.

Problem 4. Prove that the sequence
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Problem 5. Let aij be the number in the ith row and jth column of the
array
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Prove that ∑
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= −2.

Problem 6. Prove that
∫∞
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x
dx converges.

Bonus Problem. If a1, a2, a3, ... is a sequence of positive integers, prove that
the sequence
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has a real limit x. The sequence s1, s2, ... is called the continued fraction
expansion of x, and is often denoted [a1, a2, a3, ...]. Prove that a positive real
number x has a unique finite or infinite continued fraction expansion, and
that the expansion is finite if and only if x is rational.

Bonus Problem. A sequence {an} is said to be eventually periodic if there
exist positive integers N and p such that, for all n > N , an+p = an. Prove
that if a positive irrational number x has an infinite eventually periodic con-
tinued fraction expansion, then x solves a quadratic equation with integer
coefficients. The converse is true, but you needn’t prove it.


