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Convexity

Definition

A function f on [a, b] is convex, resp. concave if, for all x , y ∈ [a, b] and
all 0 ≤ α ≤ 1,

g(αy + (1− α)x) ≤ αg(y) + (1− α)g(x)

resp.
g(αy + (1− α)x) ≥ αg(y) + (1− α)g(x).
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Properties of indefinite integrals

Theorem

Let A(x) =
∫ x
a f (t)dt. Then A is convex on every interval on which f is

increasing, and concave on every interval on which f is decreasing.
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Properties of indefinite integrals

Proof.

Assume f is increasing. Let x , y ∈ [a, b] with x < y . Let 0 < α < 1 and
set z = αy + (1− α)x . Write A(z) = (1− α)A(z) + αA(z). It suffices to
show

(1− α)[A(z)− A(x)] ≤ α[A(y)− A(z)],

or, writing z − x = α(y − x), y − z = (1− α)(y − x),

A(z)− A(x)

z − x
≤ A(y)− A(z)

y − z
.

This follows from the mean property

LHS =
1

z − x

∫ z

x
f (t)dt ≤ f (z) ≤ 1

y − z

∫ z

y
f (t)dt = RHS.
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The neighborhood of a point

Definition

Any open interval containing a point p as its midpoint is called a
neighborhood of p. For r > 0,

N(p; r) = {x : |x − p| < r}.

When considering a point p ∈ [a, b],

N(p; r) = {x ∈ [a, b] : |x − p| < r}.
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Limits

Definition

We say f (x) has the limit A at p, and write

lim
x→p

f (x) = A

or, equivalently,
f (x)→ A as x → p,

if for every neighborhood N1(A) there is some neighborhood N2(p) such
that f (x) ∈ N1(A) whenever x ∈ N2(p) and x 6= p.
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Limits

An equivalent definition:

Definition

The function f (x) has limit A at p if for every ε > 0 there exists
δ > 0 such that 0 < |x − p| < δ implies |f (x)− A| < ε.

f (x) has limit A at p on the right, resp. on the left, written

lim
x→p+

f (x) = A, lim
x→p−

f (x) = A

if for every ε > 0 there is δ > 0 such that 0 < x − p < δ (resp.
0 < p − x < δ) implies |f (x)− A| < ε.
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Example of limits

If c is a constant, limx→p c = c . For any ε > 0, take any δ > 0.

We have limx→p x = p. Given ε > 0, choose δ = ε.

If p > 0, then limx→p x2 = p2. Given ε > 0, choose δ = min(p2 ,
ε
2p ).

Then
|x2 − p2| = |x + p||x − p| < 2p

ε

2p
= ε.
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Example of limits

Let f (x) = 1
x2

if x 6= 0 and f (0) = 0. In this case, f does not have a
finite limit at 0. To check this, suppose that limx→0 f (x) = A for
some real number A. Choose ε = 1. Suppose a δ > 0 has been given.
Choose an x with 0 < x < min(δ, 1

1+|A|). Then we obtain a
contradiction

1

x2
≥ (1 + |A|)2 = 1 + 2|A|+ |A|2

so ∣∣∣∣ 1

x2
− A

∣∣∣∣ > 1 + |A|.

Let f (0) = 0, f (x) = 1 for x 6= 0. Then limx→0 f (x) = 1. To prove
this, given any ε > 0, choose any δ > 0.
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Definition of continuity

Definition

A function f is said to be continuous at a point p if

1 f is defined at p, and

2 limx→p f (x) = f (p).

A function f on an interval [a, b] is continuous on the left at a (resp.
continuous on the right at b) if limx→a+ f (x) = f (a), resp.
limx→b− f (x) = f (b). We often say just f is continuous at a, resp. b.
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Definition of continuity

Definition

A function f is said to be continuous on an interval I if it is defined and
continuous at each point p ∈ I .
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Properties of limits

Theorem

Let f and g be functions such that

lim
x→p

f (x) = A, lim
x→p

g(x) = B.

Then we have

1 limx→p[f (x) + g(x)] = A + B.

2 limx→p[f (x)− g(x)] = A− B.

3 limx→p f (x) · g(x) = A · B.

4 limx→p
f (x)
g(x) = A

B if B 6= 0.
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Properties of limits

Proof.

limx→p[f (x) + g(x)] = A + B:

Given ε > 0, choose δ1, δ2 > 0 such that |x − p| < δ1 implies
|f (x)− A| < ε

2 and |x − p| < δ2 implies |g(x)− B| < ε
2 .

Let δ = min(δ1, δ2).

Then |x − p| < δ implies

|f (x) + g(x)− A− B| ≤ |f (x)− A|+ |g(x)− B| < ε.

The proof for f − g is essentially the same.
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Properties of limits

Proof.

limx→p[f (x) · g(x)] = A · B:

Let 0 < ε < 1 be given.

Let δ > 0 be such that |x − p| < δ implies |f (x)− A| < min( |A|2 ,
ε

2|B|)

and |g(x)− B| < min( |B|2 ,
ε

4|A|).

Write

f (x)g(x)− AB = f (x)[g(x)− B] + B[f (x)− A].

Thus

|f (x)g(x)− AB| ≤ |f (x)||g(x)− B|+ |B||f (x)− A|

< (2|A|) ε

4|A|
+ |B| ε

2|B|
= ε.
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Properties of limits

Proof.

limx→p
f (x)
g(x) = A

B :

By combining with the other properties, it suffices to assume f (x) = 1 and
B = 1. Given ε > 0, choose δ > 0 such that |x − p| < δ implies

|g(x)− 1| < min

(
1

2
,
ε

2

)
.

For such x , ∣∣∣∣ 1

g(x)
− 1

∣∣∣∣ =
|g(x)− 1|
|g(x)|

< 2
ε

2
= ε.
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Properties of continuity

Theorem

Let f and g be continuous at a point p. Then f + g, f − g and fg are
continuous at p. The same is true of f

g if g(p) 6= 0.

Proof.

Since limx→p f (x) = f (p) and limx→p g(x) = g(p),
limx→p(f + g)(x) = f (p) + g(p), etc.
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Squeezing principle

Theorem

Suppose that f (x) ≤ g(x) ≤ h(x) for all x 6= p in some neighborhood of
p. Suppose also that

lim
x→p

f (x) = lim
x→p

h(x) = a.

Then limx→p g(x) = a.

Proof.

Given ε > 0, choose δ > 0 such that 0 < |x − p| < δ implies |f (x)− a| < ε
and |h(x)− a| < ε. For such x , if g(x) < a, then

a− g(x) ≤ a− f (x) < ε, if g(x) < a

g(x)− a ≤ h(x)− a < ε, if g(x) ≥ a.

Thus |g(x)− a| < ε.
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Continuity of indefinite integrals

Theorem

Assume f is integrable on [a, x ] for every x ∈ [a, b], and let

A(x) =

∫ x

a
f (t)dt.

Then A is continuous at each point of [a, b].
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Continuity of indefinite integrals

Proof.

Let |f | < M on [a, b]. It follows that on any interval [c, d ] ⊂ [a, b],

−M(d − c) ≤
∫ d

c
f (t)dt ≤ M(d − c).

To check the continuity at p ∈ [a, b], given ε > 0 choose δ = ε
M . Then for

any x ∈ [a, b], |x − p| < δ implies

|A(p)− A(x)| =

∣∣∣∣∫ p

x
f (t)dt

∣∣∣∣ < Mδ = ε.
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Examples of continuous functions

Polynomials. These are obtained by taking sums and products
starting from the constant function and f (x) = x .

Rational functions. A rational function r(x) = p(x)
q(x) is the ratio of two

polynomials. This is defined and continuous wherever q(x) 6= 0.

The trig functions, sin, cos, tan, cot, sec, csc. Both sin and cos may be
expressed as indefinite integrals. The remaining functions are
obtained by taking quotients.
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Example of the squeeze principle

By applying the squeeze principle on [0, π2 ] to

0 < cos x <
sin x

x
< 1

obtain

lim
x→0+

sin x

x
= 1.
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Composition of continuous functions

Theorem

Let f be continuous at p and let g be continuous at f (p). Then g ◦ f is
continuous at p.

Proof.

Given ε > 0, let η > 0 be such that |y − f (p)| < η implies
|g(y)− g(f (p))| < ε. Let δ > 0 be such that |x − p| < δ implies
|f (x)− f (p)| < η. Then |x − p| < δ implies that |f (x)− f (p)| < η, which
implies

|g ◦ f (x)− g ◦ f (p)| < ε.
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The sign of a continuous function

Theorem

Let f be continuous at c and suppose that f (c) 6= 0. Then there is a
neighborhood of c on which f has the same sign as f (c).

Proof.

Choose ε = |f (c)|
2 in the definition of continuity. For the corresponding δ,

the claim holds on N(c , δ).
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Bolzano’s theorem

Theorem (Bolzano’s theorem)

Let f be continuous on [a, b] and suppose that f (a) and f (b) have
opposite signs. Then there is a c, a < c < b such that f (c) = 0.

Proof.

Without loss of generality, let f (a) < 0 and f (b) > 0. Let
S = {x : f (x) < 0} and set c = sup S . By the previous theorem, if
f (c) 6= 0 then there is a neighborhood about c on which f has the same
sign as c , which contradicts the fact that it is the least upper bound. It
follows that f (c) = 0.
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The intermediate value theorem

Theorem (Intermediate value theorem)

Let f be continuous on [a, b]. For every value y between f (a) and f (b)
there is c ∈ [a, b] satisfying f (c) = y.

Proof.

Let g(x) = f (x)− y . Then g changes sign on [a, b], and hence, by
Bolzano’s theorem g(c) = 0 has a solution, which also solves
f (c) = y .
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The inverse of a monotonic continuous function

Theorem

Let f be strictly increasing and continuous on [a, b], satisfying f (a) = c
and f (b) = d. Then f −1 exists and is strictly increasing and continuous on
[c, d ].

Proof.

Since f is strictly increasing it is injective.

It is surjective by the intermediate value theorem.

Thus f −1 : [c , d ]→ [a, b] is well-defined.

Given u < v find x , y such that f (x) = u, f (y) = v . Then x < y , so
f −1 is strictly increasing.
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The inverse of a monotonic continuous function

Proof.

To prove that f −1 is continuous at y = f (x) ∈ [c , d ], given ε > 0
solve f −1(y1) = max(x − ε

2 , a), f −1(y2) = min(x + ε
2 , b), and, if

y1 6= y and y2 6= y ,

δ = min(y − y1, y2 − y),

otherwise the only one which is non-zero.

Then δ > 0 and if y ′ ∈ [c , d ] satisfies |y ′ − y | < δ, then y1 ≤ y ′ ≤ y2,
which implies

|f −1(y ′)− f −1(y)| ≤ ε

2
.
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Extreme-value theorem for continuous functions

Theorem (Extreme-value theorem)

Let f be continuous on [a, b]. Then f is bounded on [a, b].
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Extreme-value theorem for continuous functions

Proof.

Suppose f is unbounded.

1 Given f unbounded on [a, b], it is unbounded on either [a, (a + b)/2]
or [(a + b)/2, b] (or both).

2 Form a sequence of intervals [a1, b1] = [a, b], [a2, b2], [a3, b3], ... by
letting each successive interval be a half of the previous interval on
which f is unbounded.

3 Let α = sup{an : n = 1, 2, 3, ...}. Then α ∈ [a, b] and f is continuous
at α, so there is a neighborhood N(α, δ) on which |f (x)| ≤ |f (α)|+ 1.

4 Since the sequence an is increasing, α− δ < an ≤ α for all n
sufficiently large, whence α− δ < bn < α + δ for all n sufficiently
large. This contradicts f unbounded on [an, bn] for all n.
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Extreme-value theorem for continuous functions

Theorem

Let f be continuous on [a, b]. Then f achieves its maximum and minimum
on [a, b].

Proof.

Let M = sup f and let g = M − f . Suppose for contradiction that there
does not exist a c ∈ [a, b] with f (c) = M. Then g > 0 on [a, b], whence 1

g

is continuous and bounded on [a, b], say by C > 0. Then g ≥ 1
C and

f ≤ M − 1
C , a contradiction.
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Uniform continuity

Definition

A function f is said to be uniformly continuous on [a, b] if, for all ε > 0
there exists δ > 0 such that |x − y | < δ implies |f (x)− f (y)| < ε.

Theorem

Let f be continuous on [a, b]. Then f is uniformly continuous on [a, b].
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Uniform continuity

Let ε > 0. Say that a function f on [a, b] ‘satisfies the uniform continuity
property with parameter ε’ if there exists δ > 0 such that, if x , y ∈ [a, b]
are such that |x − y | < δ, then |f (x)− f (y)| < ε.

Lemma

Let ε > 0. Let f be continuous on [a, b] and let a < c < b. If f satisfies
the uniform continuity property with parameter ε on [a, c] and on [c , b]
then it does so on [a, b], also.
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Uniform continuity

Proof.

Let δ1 > 0 be such that, if |x − y | < δ1 and both x , y ∈ [a, c] or both
x , y ∈ [c, b] then |f (x)− f (y)| < ε.

By the continuity of f at c , let δ2 > 0 be such that if |x − c | < δ2
then |f (x)− f (c)| < ε

2 .

Choose δ = min(δ1, δ2).

To check the uniform continuity property at ε of f on [a, b], it suffices
to consider the case |x − y | < δ, x ∈ [a, c], y ∈ [c , b].

In this case, |c − x |+ |y − c | = |y − x | < δ, so

|f (x)− f (y)| ≤ |f (x)− f (c)|+ |f (c)− f (y)| < ε

2
+
ε

2
= ε.
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Uniform continuity

Proof that continuity implies uniform continuity on a closed interval.

Suppose for contradiction that there is an ε > 0 for which the uniform
continuity property at ε does not hold on [a, b].

If uniform continuity with parameter ε does not hold on [a, b], then it
does not hold on one of [a, (a + b)/2], [(a + b)/2, b].

Perform the method of bisection to obtain intervals [a1, b1], [a2, b2], ...
on which uniform continuity does not hold with parameter ε.

Let α = sup{an}. By continuity at α with parameter ε
2 , there is a

neighborhood N(α, δ) on which |f (x)− f (α)| < ε
2 .

By the triangle inequality, for x , y ∈ N(α, δ),

|f (x)− f (y)| ≤ |f (x)− f (α)|+ |f (α)− f (y)| < ε.

Since [an, bn] ⊂ N(α, δ) for all sufficiently large n, we obtain a
contradiction.
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Integrability of continuous functions

Theorem

Let f be continuous on [a, b]. Then f is integrable on [a, b].

Proof.

By the previous theorem, f is uniformly continuous on [a, b].

Let ε > 0, and choose n ≥ 1 such that |x − y | < b−a
n implies

f (x)− f (y) < ε.

Perform the equipartition of [a, b] into n intervals and form lower and
upper step functions sn, tn for f on [a, b] by setting sn to be the
minimum of f on each interval, and tn the max.

By the uniform continuity, tn − sn < ε, which shows that∫ b
a tn ≤

∫ b
a sn + ε(b − a).

It follows that the lower and upper integrals are equal.
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Mean value theorem for integrals

Theorem (Mean value theorem for integrals)

Let f be continuous on [a, b]. Then there is c ∈ [a, b] such that

f (c) =
1

b − a

∫ b

a
f (x)dx .

Proof.

Let A = 1
b−a

∫ b
a f (x)dx . Let m and M denote the min and max of f on

[a, b]. Then m ≤ A ≤ M, so that the conclusion follows by the
intermediate value theorem.
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Open intervals

The function f (x) = 1
x on (0, 1] gives an example of a continuous function

which is

Not bounded

Not uniformly continuous

Not integrable

Hence, the fact that we work with closed intervals is necessary in the
proofs of the last several theorems.
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Further notions of limits

Several further notions of limits exist other than those already discussed.
Any interval (M,∞) is called a ‘neighborhood of infinity’ while any
interval (−∞,M) is called a ‘neighborhood of negative infinity’.

limx→∞ f (x) = A if, for all ε > 0 there exists M > 0 such that x > M
implies f (x) is defined and |f (x)− A| < ε.

limx→p f (x) =∞ if, for all N > 0 there exists δ > 0 such that
0 < |x − p| < δ implies f (x) > N.
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Further notions of limits

Both of the previous definitions fits the following common generalization.

Definition

Let p, q ∈ R ∪ {∞,−∞} (this set is sometimes called the ‘extended real
numbers’). We write limx→p f (x) = q if, for every neighborhood N1 of q
there is a neighborhood N2 of p, such that if x ∈ N2 \ {p} then f (x) ∈ N1.
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Further notions of limits

If f is a function defined on N (also called a sequence), then

limn→∞ f (n) = A means, for all ε > 0 there exists N > 0, such that
n > N implies |f (n)− A| < ε.

limn→∞ f (n) =∞ means, for all M > 0 there exists N > 0, such that
n > N implies f (n) > M.
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