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Properties of the integral
Theorem (Linearity with respect to integrand)

If f and g are integrable on [a, b], then for every pair of constants ci, ¢,
cif + cg is integrable on [a, b]. Furthermore,

/a b[clf(x) + cg(X)]dx = a1 / i F(x)dx + ¢ / ’ g(x)dx.

Proof.

Last class we checked the claim for f + g, so we'll just check the claim for
cf. For each n=1,2, ... choose step functions s, < f < t,

/ab Flox)de = % = /ab sn(x)dx < /ab tn(x)dx < /ab f(x)dx + %

O]

v

Bob Hough Math 141: Lecture 6 September 19, 2016 2/33



Properties of the integral

Proof.
Suppose ¢ > 0. Then

b 2¢ b
/ ctp(x)dx — — </ csn(x)dx
a n a
b b
< / cf (x)dx < / ctp(x)dx.
It follows that 0 < I(cf) — I(cf) < 2 for every n, so the two are both

equal to fab cf (x)dx.
The case ¢ < 0 exchanges the role of lower and upper step functions. [

v
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Properties of the integral

Theorem (Additivity with respect to the interval of integration)

If two of the following three integrals exist, the third also exists, and we
have
b c c
/ f(x)dx —I—/ f(x)dx = / f(x)dx.
a b a
Proof.

Suppose both integrals on the left exist. Choose step functions s, t on
[a, b] with s < f < t and step functions s’, t’ on [b, c] with s’ < f < t’ and

/ab F(x)dx — % < /abs(x)dx < /ab t(x)dx < /ab F(x)dx + %

with similar inequalities for s, t' on [b, c]. O
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Properties of the integral

Proof.

Define s” and t” on [a, c] by setting s”(x) = s(x) on [a, b], s”(x) = s'(x)
on (b, c], with the corresponding definition of t”. Then s” < f < t” and

/ab F(x)dx + /b Flx)ax == < /:Sﬂ(x)dx : / e

< /ab F(x)dx + /b F(x)dx + %

This proves that the lower and upper integrals are equal to
fab f(x)dx + fbc f(x)dx.
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Properties of the integral

Proof.

Now suppose that f is integrable on [a, b] and on [a, c]. Let s and t be
lower and upper step functions for f on [a, b], which approximate the
integral to precision % and similarly s’ and t' on [a, c]. Define s”,t"” on
[a,b] by s" =, t” = t' on (b, c] and

s”(x) = max(s(x),s'(x)), t"(x) = min(t(x), t'(x)), x € [a, b].
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Properties of the integral

Proof.
Then

/bc t"(x)dx — /bc s"(x)dx = /: t"(x)dx — /: s"(x)dx
B (/ab t"(x)dx — /ab s”(x)dx) < %

By taking n arbitrarily large, it follows that the upper and lower integrals
of f on [b, c| agree. O

v
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Properties of the integral

Proof.
Observe that

[ s~ [ e < [“srga [ srgan

g/: f(x)dx—/abf(x)dx—i-%

to complete the proof.

Bob Hough Math 141: Lecture 6 September 19, 2016 8 /33



Properties of the integral

Theorem (Invariance under translation)

If f is integrable on [a, b], then for every real ¢ we have

/a i F(x)dx = / o F(x — c)dx.

+c

Proof sketch.

If s and t are lower and upper step function for f on [a, b], then s(x — ¢)

and t(x — c) are lower and upper step functions for f(x — c) on

[a+ ¢, b+ c] with the same integrals. It follows that the lower and upper
integrals match on the two intervals. O

v
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Properties of the integral

Theorem (Expansion or contraction of the interval of integration)

If f is integrable on [a, b], then for every real k # 0 we have

/ab f(x)dx = %/kkbf (%) dx.

a

Proof.

Let k > 0. If s and t are lower and upper step functions for f on [a, b],
then s (f) t (%) are lower and upper step functions for f (%) on [ka, kb],
so the theorem follows from the theorem for step functions. If k < 0,
argue the same way, integrating on [kb, ka] instead. [

v
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Properties of the integral

Theorem (Comparison theorem)

If both f and g are integrable on [a, b] and if g(x) < f(x) for every x in

[a, b], then we have
b b
/ g(x)dx < / f(x)dx.
Proof.

Let s be a lower step function for f and s’ a lower step function for g.
Define s” = max(s, s’), which is still a lower step function for f. Then
fab s'(x)dx < fab s”(x)dx, from which it follows that

b b
/ g(x)dx = 1(g) < I(f) = / f(x)dx.

O]

v
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The area between two integrable functions

Theorem

Assume f and g are integrable and satisfy f < g on [a, b]. Then the

region S between their graphs is measurable and its area a(S) is given by
the integral

b
a(5) = / (8(x) — F(x)]dx.
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The area between two integrable functions

Proof.
First suppose that both f,g > 0. Set

F={(x,y):a<x<b0<y<f(x)},
G={(x,y):a<x<b0<y<g(x)}

Then S = G\ F. Thus a(S) = a(G) — a(F). By the theorem proved last
lecture regarding the area under the integral of a positive function,

b
2(G) - a(F) = / [g(x) — F(x)]dx.
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The area between two integrable functions

Proof.

If f takes negative values, choose M > 0 such that f > —M. Apply the
previous calculation to f + M and g + M and note that this just translates
the region S by M and does not change its area. The same is true of the
difference of integrals. O
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Area under similarity

Theorem

Let f > 0 on [a, b] be integrable with ordinate set S of area A. The area
of kS is k?A.

Proof.

Let g(x) = kf (%) on [ka, kb]. The ordinate set of g is the set kS. By the
properties of the integral,

a(kS) = /kkbg(x)dx - k/kb f (%) dx = Kk2A.

a ka
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Example integral

Theorem

1 3
Let a >0, foaxidx = %ai.

Proof.

Since the function x? is increasing, it is non-negative and integrable.

1
Write S for its ordinate set on [0, a], with area a(S) = [; x2dx. Let R be
the rectangle with corners at (0,0) and (a, a%). The set R\ S is the

1
ordinate set minus the graph of the function x = y? on [0, a2], with area

3
%. Thus S has area %ai.

Nlw

O]

v
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Trig identities

Recall that 7 is defined to be the area of a circle of unit radius, also, half
the circumference of such a circle.

@ Angles are measured in radians. The radian measure of an angle is
twice the area of the sector subtended.

@ The (x,y) coordinates of the subtended angle 6 are (cosf,sin6).
@ For0<x < 7,

sin x
O0<cosx < — < 1.
X
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Trig identities
Theorem
@ sin5 — x = cosx
© cos —x = cosx, sin—x = —sinx

© cosy — x = cos y cosx + sin y sin x.

Proof.

By Euler's formula €™ = cosx + isin x,

E_ T I . .
el(2 X):el2el( X):*:SlnX—FICOSX.
COS X + 1SIn X

We have e™™ = cos(—x) + isin —x = e% = cos x — i sin x. By Euler again,

cosy — x = Re'V™) = R(cos y + isiny)(cos x — isinx)

= COS ¥ COS X + sin y sin x.

0J
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Trig identities

Theorem
@ cosa—cosb = —2sin %b sin %b; cos x decreases, sin X increases on
s
[0, 51

@ sinx+ y =sinxcosy + cos xsiny.

Proof.

. ix
Use sinx = £

_e—ix .
5 to write

D a—b . a+b 1 ( i(a—b) _i(a—b))( i(a+b) _i(a+b))
—2SIn Sin = —|e 2 — € 2 e 2 — e 2
2 2 2
e

ia y g=ia  gib | g—ib
2

— 5 — cosa — cos b.

sinx 4+ y = Se/TY) = §((cos x + isinx)(cos x + i siny))

= cosxsiny +sinxcosy.
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Trig identities

Theorem
Foreachn=1,2,..., and x € R,

Cox (1 u . 1
2sm§ <§+kz_1coskx> = sin (n+ E)X

Proof.

ix —ix . ix E -
Use cos x = € +2e , sinx = &=%—. The identity rearranges to

A5 g N i(n+3)x _ gmilnt3)x)
( PIEC )

This may be verified by induction on n.
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Trig integrals

Theorem

If0 < a< 75 and n is sufficiently large, we have

n n
a ka . a a ka
—E cos—<sma<—+—§ Ccos —.
n n 2n n n
k=1 k=1

Since cos is decreasing on [0, 7] it is integrable, with equal subdivision

lower integrals given by
n
a ka
— E cos —.
n n
k=1

Since the error from this lower integral is bounded by a constant times ,—11
it follows that [; cos#df = sin a.
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Trig integrals

One obtains

—0) d0:/2 cosfdf =1—cosa. (1)
2 5,

o & = E DA
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Trig integrals

Proof of inequality with sum of cosines.

By the formula two slides previous,

n 2 1ya B &
a ka _sin(n+3)2 —sin .
— ) cos— = — :
nk:l n ?Slnﬂ

Set 6 = 5. By the angle addition formula,

sin(2n + 1)0 = sin 2nf cos 6 + cos 2nf sin < sin 2n«9¥ +sin6.

This rearranges to the first claimed inequality

sin(n+ 3)2 —sin £

2n sin 2 < sin a.
a 2n
y
Bob Hough Math 141: Lecture 6 September 19, 2016 23 /33



Trig integrals

Proof.

To prove the second inequality, write
g g ka sin(n+3)
op T2 T T s

Thus the second inequality reduces to

2n a
— sin —sina < sina < sin(n +
a 2n

This holds for all n large enough so that - 2 a7y
sinf is increasing on [0, 5

1
5)-

n

, since % < 1, and
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Polar coordinates

Let f > 0 on an interval [a, b], where 0 < b — a < 27.

@ The radial set of f over [a, b] is the set of points in polar coordinates
{(r,0):a<0<b,0<r<f(6)}

e If f is a constant s on interval [a, b], the area of the corresponding

sector is 1(b — a)s>.
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Polar coordinates

Theorem

Let R denote the radial set of a nonnegative function f over an interval
[a, b], where 0 < b — a < 27, and assume that R is measurable. If f? is
integrable on [a, b] the area of R is given by the integral

a(R) = %/b 2(6)d6.

Proof.

Let s and t be step functions with radial sets S, T and satisfying
s<f<t ThenSC RC T. Hence

b b
/52(9)d0§2a(R)§/ t2(0)de.

Since s? and t? are arbitrary lower and upper step functions for 2, the
claim follows. O

v
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Average value of a function

Given n numbers aj, as, ..., an, their arithmetic mean, or average, is

Definition
If f is integrable on an interval [a, b], we define A(f), the average value of
f on [a, b], by the formula

b
A(f) = bia/a f(x)dx.
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Average value of a function

Let wi, ws, ..., w, be non-negative numbers, not all zero. The weighted

mean of ag, ..., an
n
Zkzl Wi ak
== .
D k=1 Wk

Let w be a non-negative integrable function fab w(x) > 0. The weighted
mean of f(x) on [a, b]

a=

fab f(x)w(x)dx '
[P w(x)dx

a

A(f) =
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Metal rod example

A straight rod of length a and positive mass is positioned on the x-axis
interval [0, a] with integrable mass-density function p(x). This means that
the mass of the rod between b and c is [, p(x)dx.

@ The center of mass is 5
Jo xp(x)dx
foa p(x) ‘

o The moment of inertia is [7 x*p(x)dx.

X =

o The radius of gyration is

2 _ foa x?p(x)dx
foap(x)dx .
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Properties of indefinite integrals

Let f be a function on [a, b] such that the integral [ f(t)dt exists for
each x € [a, b]. The function

F(x) :/X F(dt, a<x<b

is an indefinite integral of f.
One has

/d F(t)dt = F(x)|¢ = F(d) — F(c).
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Convexity

Definition
A function f on [a, b] is convex, resp. concave if, for all x,y € [a, b] and
all0 < a <1,

glay + (1 — a)x) < ag(y) + (1 — a)g(x)

resp.

glay + (1 - a)x) > ag(y) + (1 — a)g(x). )
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Properties of indefinite integrals

Theorem

Let A(x) = [ f(t)dt. Then A is convex on every interval on which f is
increasing, and concave on every interval on which f is decreasing.
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Properties of indefinite integrals

Proof.

Let x,y € [a, b] with x < y. Let 0 < a < 1 and set z = ay + (1 — a)x.
Write A(z) = (1 — @)A(z) + aA(z). It suffices to show

(1= a)[A(2) — A(X)] < ofAly) — A(2)],
or, writing z — x =a(y — x), y —z= (1 — a)(y — x),

Ae) = A - Aly)—AlE)

zZ—X y—z

This follows from the mean property

1 z z
LHS — / F(t)dt < F(2) < / £(t)dt = RHS.
z—x Jy y—z)J,
DJ
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