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Fourier series
Definition
Let f be integrable on [0,1]. The Fourier coefficients of f are defined by

1
)A‘(n):/ f(x)e 2minxdx.
0

The Fourier series of f is the series

x) ~ Y F(n)e™i™,

nez

No equality is asserted by the notation ~. We say that the Fourier series
converges to f at the point x if

= |lim g f 27””’(.
N—>oo
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Fourier series

@ The integral formula implies the following orthogonality relation

1 1
/ Q2T IMX G2reinX ofye — / e2mi(m=n)x gy { 1 m=n
0 0 0 m%#n

2minx

e A trigonometric polynomial is a finite sum P(x) = > _ccpe

where S is a finite set of frequencies.

neS

o Calculate, using orthogonality,

1 1 )
/0 [P(x)Pdx = /0 > e e =y e

ni,meS nes
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Bessel's inequality

Theorem
Let S C 7Z be a finite set of frequencies. For any constants {cp}nes,

1 2 1 )
dx < / f— cpe™nx
/ (r-%

neS

2
F(x) = > F(n)e?™™ dx.

neS
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Bessel's inequality

Proof.
Expand the square using
|A—B|>=(A—B)(A— B) = |A?> — AB — AB + | B|? to write

1
/ f— c e27rinx
E n
0

nes

2 1 1 _
dx = / I (x)|? dx — / F(x) S ae 2™
0

0 neS
1 — . 1 . 2
—/ f(x)chezm"de —|—/ Z cpe2™ ™| dx.
0 neS 0 neS
Using the orthogonality relation, this becomes
1 -
/ )P dx— Y F)e — 3 F(men+ 3 [enl2.
0 neS nes nesS
D)
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Bessel's inequality

Proof.
Rewrite
1 2
/ f— Z ca€2™X | dx
0 nes
1 _
/ F)Rax— 3 e — 3 Fmen+ 3 el
0 nesS nes nesS

2

= /1 F)Pdx = ‘?(n)‘z +) ‘?(n) —Cn
0 nes nes

This is minimized if ¢, = f(n) for each n € S, which completes the
proof.
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Bessel's inequality
Theorem (Bessel's inequality)
Let f be Riemann integrable on R/Z and let S C Z be a possibly infinite

set. We have
GOIN / 1£(x)|2dx.

neS

Proof.
By the previous proof, for any N,

[ ireora- 3 [rf

neS,|n|<N
2

:/1 f(x)— Z ?(n)ezﬂinx dx >0
0

neS,|n|<N

Taking N — oo completes the proof.

y
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Riemann-Lebesgue Lemma

Lemma (Riemann-Lebesgue Lemma)

Let f be integrable on R/Z. As |n| — oo, ‘?(n)‘ — 0.

Proof.

a2
This follows, since the sum > ‘f(n)’ converges. O
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Convergence of Fourier series

Theorem

Let f be a function on R/Z which satisfies for some x, there are constants
0 >0 and M < oo such that

[f(x+1) = F(x)| < Ml¢]
for all t € (—6,0). Then

f(x) = lim Z F(n)emn
N—>oo
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Convergence of Fourier series

The proof uses Dirichlet’s kernel Dy(x) = E,,N:_N 2™ Recall that this
satisfies
° fol Dn(x)dx =1

sin 27r(N+%)x
sin Tx

(] DN(X) =
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Convergence of Fourier series
Proof.

Since fo Dn(x)dx =1, f(x) = fo x)Dp(t)dt. Calculate
Z f 27Tlnx / f —271'm(t X)dt / f t)DN X — t)
n=—N

By the change of variables u = x — t, and the 1-periodicity of f and Dy,
this is

X 1
/ f(x — t)Dn(t)dt = / f(x — t)Dy(t)dt.
x—1 0

Hence

F(x) Z #(n ZW'"X—/ (F(x) — F(x — £))Du(t)dt.

n=—N
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Convergence of Fourier series

Proof.
Recall
N 1
Fx) = > f(n)e?™™ = / (f(x) — f(x — t))Dy(t)dk.
n=~ 0
Define

f(x).—f(x—t) t 240
g(t) = { 5|rb7rt tio

which is a bounded, integrable function of t. Write

1
sin 27 (N + 5) t = sinmt cos 2w Nt + cos 7t sin 27 Nt.
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Convergence of Fourier series

Recall

N 1
f(x) — Z F(n)e?min< = / g(t) (sinmt cos 2w Nt + cost sin 2w Nt) dt.
n=—N 0

Since g(t)sin7t and g(t)cost are integrable, by the Riemann Lebesgue
lemma, the integral on the right tends to 0 as N — co.
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Convolution and Fourier series

Let £ and g be two integrable functions on R/Z. Their convolution is
defined by

Feg(x) = /0 F(D)g(x — t)dt = /0 F(x — t)g(t)dt.

The equality between the two integrals is obtained by substituting
u = x —t as before.

f % g is periodic with period 1, since g(x +1 —t) = g(x — t).
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Convolution and Fourier series

Theorem

Let f and g be Riemann integrable on R/Z. Then f x g is continuous.

J
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Convolution and Fourier series

Proof.

Let |g| < M. Given € > 0, recall from Homework #6, Problem 2 that
there exists a continuous function f; such that fol [f(x) — f(x)|dx < 3%-
Observe

1
V*an—ﬂ*anh{4<ﬂw—mwmu—ww

€

<m [ 170 - (ojar < §
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Convolution and Fourier series
Proof.

Since f; is absolutely continuous, there is § > 0 such that, for x € R, if
|x — y| <0 then |fi(x) — fi(y)| < 3. Thus for [x — y| <9,

i)~ e gl = | [ (0t~ )~ Ay~ O)et

< M/ Rl £) ~ fily — B)de < 5.
0
Combining these estimates,

[fxg(y) — f*g(x)| =

((f x g(y) — fixg(y)) + (A *g(y) — fi xg(x)) + (o *g(x) — f*g(x))]

<I|fxgly)—h*xgy)l+|h*gly) — fixg(x)|+ |h*g(x)—f*g(x)|
< €.
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Convolution and Fourier series
Theorem

Let f be Riemann integrable and let g be a trigonometric polynomial, that
] > nes Cn€2™™ for some finite set of frequencies S. Then

is, g(x) =

f *g Z f 27rinx‘

neS

Proof.

Calculate

1
fxg(x)= / () Z 2T irx=t) gt
0

nesS
—_ 2 :Cn 27I'II1X/ f(t)e—Zmntdt —_ § :f(n)c,,ezﬂ’”x.
nes nesS
[
v
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Fejér's kernel

Definition
Let N > 1. The function

2 - 17, 2
K(x) = Dn(x)> 1 sin27(N + 5)x
MY =oONT1T 2N+ 1 sin

is called Fejér’s kernel. It has Fourier coefficients

2N-+1—|n|
Ry(my={ 2w Inl<2n
0 otherwise
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Fejér's kernel

To check the claim regarding the Fourier coefficients, expand the square:

N 2
DN(X)2 _ ( Z e27rinx>
n=—N
N

— § e27ri(n1+n2)x

ny,np=—N

2N )
= ) (@N+1—|n)e’m™.
n=—2N
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Fejér's kernel

Theorem

Fejér's kernel satisfies the following properties.
Q@ Kn(x) >0

Q fol Kn(x)dx =1
© For each fixed § > 0, limy_so0 f5° Kn(x)dx = 0.

These properties make Ky(x) a ‘summability kernel'.
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Fejér's kernel

Proof.

The first property holds since Ky is proportional to D,2V. The second
property is the Fourier coefficient of Ky at 0. To prove the third, use

] 1 2 2
Kn(x) = 1 sin27(N + 5)x - 1 1
N = oN+ 1 Sin X SoN+1 \sinax/

1-6 1 1-6 1
Ky (x)dx < ———— 4
/5 nix)dx < 2N+1/5 (sinmx)2 "

tends to 0 as N — oo.

Thus
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Convergence of Cesaro means

Theorem

Let f be continuous on R/7Z. Then f x Ky converges to f uniformly as
N — co.
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Convergence of Cesaro means

@ The trigonometric polynomial f x Ky is given by

2N
2N+1_|n|" Tinx
f * KN(X) = Z Wf(n)ez
n=-2N

and is a Cesaro mean of the Fourier series for f.

@ This theorem demonstrates that the trigonometric polynomials are
dense in the space of continuous functions on R/Z.
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Convergence of Cesaro means

Proof.

Since f is uniformly continuous, given € > 0 choose > 0 so that
|x — y| < & implies |f(x) — f(y)| < 5. Let f be bounded by M, and
choose N sufficiently large such that

1-§ .
Kn(x)dx < —— .
/5 N(X) X < aM
Then, using that fol Kn(x)dx = 1,

1
[f(x) — f* Kn(x)| = ‘/0 (f(x) — f(x —t))Kn(t)dt
1
< /0 |f(x) — f(x — t)|Kn(t)dt.
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Convergence of Cesaro means

Proof.

Recall

1
|f(x) — f* Kn(x)| < /0 |f(x) — f(x — t)|Kn(t)dt
1-6

5
:/ |f(x)—f(x—t)|KN(t)dt+/ |f(x) — f(x — t)|Kn(t)dt.
-5 é

Note that we've used the one-periodicity to replace the integral of
integration with [—d,1 — d]. In the first integral, bound
[f(x) — f(x — t)| < § to estimate

1

1) ¢ ¢
/_5 IF(x) — F(x — £)|Kn(t)dt < 5/0 Kn(t)dt = &

O

v
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Convergence of Cesaro means

Proof.
In the integral from 6 to 1 — 9§, bound |f(x) — f(x — t)| < 2M to estimate

€

1-6 1-6
/ |f(x) — f(x — t)|Kn(t)dt < 2M/ Kn(t)dt < oM = £
5 5 aM 2

Combining these estimates,

1
/0 IF(x) — F(x — t)|Kn(t)dt < g 4 g —e

completing the proof. O
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Convergence in L!

Theorem

Let f be integrable on [0,1]. Then for any N > 1,

1 1
[ 1 kulas < [1reola

o & = E DA
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Convergence in L!

Proof.
By positivity of Ky,

/01 IF % Kn(x)|dx = /01 /01 F(t)Kn(x — t)‘ dtdx

g/ol /l\f(t)]KN(x—t)dtdx

2N

s 2+l / / [£(£)] 2770~ e
S 2N+1
n=—2N
2N
2N+1_n| 21n></ 2wint
iy f Tin
_ZzN T £ (£)|e=2" " dtdx

The inner integral over t is a constant which depends on n but not x.

Treating this as fixed we may integrate in x to eliminate all but n =0,

which leaves [5 |f  Kn(x)|dx < [ |f(t)|dt. O
v
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Convergence in L!

Theorem

Let f be integrable on [0,1]. Then

[im

1
/ |f(x) — f * Kn(x)|dx = 0.
N—o0 0
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Convergence in L!

Proof.
Given € > 0, choose continuous f; such that fol [f(x) — fi(x)|dx < %.

Choose N sufficiently large so that |f1(x) — fi * Kny(x)| < §, uniformly in
x. Then
1
/ |f(x) — f * Ky(x)|dx
0
1
= / I(f = A)(x) + (A = fux Kn)(x) + ((F = f1) = Kn)(x)|dx
0
1 1
< [ 16F = B0l + [ 106~ i+ Kn)(o)lax
0 0
1
+/ |f — f] * Kn(x)dx
0

cfLfLc .,
3 3 3 °

O]

4
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Parseval's theorem

Theorem (Parseval's theorem)

Let f and g be Riemann integrable on R/Z. Then

[ 1reoase = 3 [
0

nezZ

and

/0 F(x)E(x)dx = S 7(n)E(n).

nezZ
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Parseval's theorem
Proof.

Observe

1 _ 1
8n) = [ gl)e 2™ ax= [ glx)erimax ).
0 0

Calculate

1 , _ 1 3
/0 |f(x)|°dx = Nh—r>noo/0 f(x)(f * Kn(x))dx
2N

T 2N +1 — | 2minx
_N'f'oo/ (x) Zm N T meTa
2N

. 2N +1—|n| |~

= | - - 7

NEEn ZE: 2N +1
n=—2N

O]

v
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Parseval's theorem

Proof.
To check that

2N

. 2N +1—|n| |, 2 n 2
im0 S e =R
n=—2N nez
2N+1—|n|

observe that for each fixed n,

N 2 N 2
SN f(n)’ increases to ‘f(n) . Thus,
as a function of N the left hand side is increasing and bounded above, so
converges to a limit, which is at most the right hand side. For each M the
A 2 a2
limit is bounded below by S, ‘f(n)‘  which tends to 3, _, ‘f(n)‘
as M — oo.
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Parseval's theorem

Proof.

For the second statement, calculate in the same way

1 2N
. IN+1—|nls
/ gGa = i 30 25 HCnE)

Argue as before, using Cauchy-Schwarz to bound the tail

2
2N +1—|n|\ ~, =
> (G ')f(n)g<n)

M<|n|<2N

< Z‘f(n‘ > l&(n)

[n|>M [n|>M
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Determination of ((2)

Theorem

o & = E DA
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Determination of ((2)
Proof.

Recall from last lecture that the square signal

={ 1,

has Fourier coefficients

Ni= O

INIA
x X

A N
=N

By Parseval,

1 . 8 1
1= /O sC)Pax => B(mPP=—= >

—-
T n
neZ n>0, odd

O

v
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Determination of ((2)

Proof.
Thus

@@=y
T g1 e
1_2_2n>0,odd > 38 6
O
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Algebraic properties of convolution

Theorem
Let f, g, h be integrable functions. Then
Q fxg=gxf

Q@ fx(gxh)=(f*xg)xh
_7

@ For each n, ﬂ\g(n (mg(n)

Proof.

All of these properties hold for trigonometric polynomials, where
convolution becomes multiplication under Fourier transform. Use that the
trigonometric polynomials are dense with respect to integration (L

norm). O

v
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