Math 141: Lecture 23

Fourier series and convolution

Bob Hough

December 5, 2016

1 / 39

Bob Hough Math 141: Lecture 23 December 5, 2016

Fourier series

Definition

Let f be integrable on [0,1]. The Fourier coefficients of f are defined by

$$\hat{f}(n) = \int_0^1 f(x)e^{-2\pi i n x} dx.$$

The Fourier series of *f* is the series

$$f(x) \sim \sum_{n \in \mathbb{Z}} \hat{f}(n) e^{2\pi i n x}.$$

No equality is asserted by the notation \sim . We say that the Fourier series converges to f at the point x if

$$f(x) = \lim_{N \to \infty} \sum_{n=-N}^{N} \hat{f}(n) e^{2\pi i n x}.$$

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ ■ 釣۹で

Fourier series

The integral formula implies the following orthogonality relation

$$\int_0^1 e^{2\pi i m x} \overline{e^{2\pi i n x}} dx = \int_0^1 e^{2\pi i (m-n) x} dx = \left\{ \begin{array}{ll} 1 & m=n \\ 0 & m \neq n \end{array} \right..$$

- A trigonometric polynomial is a finite sum $P(x) = \sum_{n \in S} c_n e^{2\pi i n x}$ where S is a finite set of frequencies.
- Calculate, using orthogonality,

$$\int_0^1 |P(x)|^2 dx = \int_0^1 \sum_{n_1, n_2 \in S} c_{n_1} \overline{c_{n_2}} e^{2\pi i (n_1 - n_2)x} dx = \sum_{n \in S} |c_n|^2.$$

Bob Hough Math 141: Lecture 23 December 5, 2016 3 / 39

Theorem

Let $S \subset \mathbb{Z}$ be a finite set of frequencies. For any constants $\{c_n\}_{n \in S}$,

$$\int_{0}^{1} \left| f(x) - \sum_{n \in S} \hat{f}(n) e^{2\pi i n x} \right|^{2} dx \le \int_{0}^{1} \left| f - \sum_{n \in S} c_{n} e^{2\pi i n x} \right|^{2} dx.$$

4 / 39

Bob Hough Math 141: Lecture 23 December 5, 2016

Proof.

Expand the square using

$$|A - B|^2 = (A - B)(\overline{A} - \overline{B}) = |A|^2 - A\overline{B} - \overline{A}B + |B|^2$$
 to write

$$\int_{0}^{1} \left| f - \sum_{n \in S} c_{n} e^{2\pi i n x} \right|^{2} dx = \int_{0}^{1} |f(x)|^{2} dx - \int_{0}^{1} f(x) \sum_{n \in S} \overline{c_{n}} e^{-2\pi i n x} dx$$
$$- \int_{0}^{1} \overline{f}(x) \sum_{n \in S} c_{n} e^{2\pi i n x} dx + \int_{0}^{1} \left| \sum_{n \in S} c_{n} e^{2\pi i n x} \right|^{2} dx.$$

Using the orthogonality relation, this becomes

$$\int_0^1 |f(x)|^2 dx - \sum_{n \in S} \hat{f}(n) \overline{c_n} - \sum_{n \in S} \overline{\hat{f}(n)} c_n + \sum_{n \in S} |c_n|^2.$$

Proof.

Rewrite

$$\int_{0}^{1} \left| f - \sum_{n \in S} c_{n} e^{2\pi i n x} \right|^{2} dx$$

$$\int_{0}^{1} |f(x)|^{2} dx - \sum_{n \in S} \hat{f}(n) \overline{c_{n}} - \sum_{n \in S} \overline{\hat{f}(n)} c_{n} + \sum_{n \in S} |c_{n}|^{2}$$

$$= \int_{0}^{1} |f(x)|^{2} dx - \sum_{n \in S} \left| \hat{f}(n) \right|^{2} + \sum_{n \in S} \left| \hat{f}(n) - c_{n} \right|^{2}.$$

This is minimized if $c_n = \hat{f}(n)$ for each $n \in S$, which completes the proof.

401491451451 5 000

6 / 39

Bob Hough Math 141: Lecture 23 December 5, 2016

Theorem (Bessel's inequality)

Let f be Riemann integrable on \mathbb{R}/\mathbb{Z} and let $S \subset \mathbb{Z}$ be a possibly infinite set. We have

$$\sum_{n\in\mathcal{S}}\left|\hat{f}(n)\right|^2\leq\int_0^1|f(x)|^2dx.$$

Proof.

By the previous proof, for any N,

$$\int_{0}^{1} |f(x)|^{2} dx - \sum_{n \in S, |n| \le N} |\hat{f}(n)|^{2}$$

$$= \int_{0}^{1} \left| f(x) - \sum_{n \in S, |n| \le N} \hat{f}(n) e^{2\pi i n x} \right|^{2} dx > 0$$

Taking $N \to \infty$ completes the proof.

Riemann-Lebesgue Lemma

Lemma (Riemann-Lebesgue Lemma)

Let f be integrable on \mathbb{R}/\mathbb{Z} . As $|n| \to \infty$, $|\hat{f}(n)| \to 0$.

Proof.

This follows, since the sum $\sum_{n\in\mathbb{Z}}\left|\hat{f}(n)\right|^2$ converges.

Theorem

Let f be a function on \mathbb{R}/\mathbb{Z} which satisfies for some x, there are constants $\delta>0$ and $M<\infty$ such that

$$|f(x+t)-f(x)|\leq M|t|$$

for all $t \in (-\delta, \delta)$. Then

$$f(x) = \lim_{N \to \infty} \sum_{n=-N}^{N} \hat{f}(n) e^{2\pi i n x}.$$

The proof uses Dirichlet's kernel $D_N(x) = \sum_{n=-N}^N e^{2\pi i n x}$. Recall that this satisfies

- $D_N(x) = \frac{\sin 2\pi \left(N + \frac{1}{2}\right)x}{\sin \pi x}$

10 / 39

Proof.

Since $\int_0^1 D_N(x) dx = 1$, $f(x) = \int_0^1 f(x) D_N(t) dt$. Calculate

$$\sum_{n=-N}^{N} \hat{f}(n)e^{2\pi i n x} = \int_{0}^{1} f(t)e^{-2\pi i n(t-x)}dt = \int_{0}^{1} f(t)D_{N}(x-t)dt.$$

By the change of variables u = x - t, and the 1-periodicity of f and D_N , this is

$$\int_{x-1}^x f(x-t)D_N(t)dt = \int_0^1 f(x-t)D_N(t)dt.$$

Hence

$$f(x) - \sum_{n=-N}^{N} \hat{f}(n)e^{2\pi inx} = \int_{0}^{1} (f(x) - f(x-t))D_{N}(t)dt.$$

Proof.

Recall

$$f(x) - \sum_{n=-N}^{N} \hat{f}(n)e^{2\pi i n x} = \int_{0}^{1} (f(x) - f(x-t))D_{N}(t)dt.$$

Define

$$g(t) = \begin{cases} \frac{f(x) - f(x-t)}{\sin \pi t} & t \neq 0 \\ 0 & t = 0 \end{cases}$$

which is a bounded, integrable function of t. Write

$$\sin 2\pi \left(N + \frac{1}{2}\right)t = \sin \pi t \cos 2\pi N t + \cos \pi t \sin 2\pi N t.$$

12 / 39

Bob Hough Math 141: Lecture 23 December 5, 2016

Recall

$$f(x) - \sum_{n=-N}^{N} \hat{f}(n)e^{2\pi i n x} = \int_{0}^{1} g(t) (\sin \pi t \cos 2\pi N t + \cos \pi t \sin 2\pi N t) dt.$$

Since $g(t)\sin \pi t$ and $g(t)\cos \pi t$ are integrable, by the Riemann Lebesgue lemma, the integral on the right tends to 0 as $N\to\infty$.

Bob Hough Math 141: Lecture 23 December 5, 2016 13 / 39

Let f and g be two integrable functions on \mathbb{R}/\mathbb{Z} . Their convolution is defined by

$$f * g(x) = \int_0^1 f(t)g(x-t)dt = \int_0^1 f(x-t)g(t)dt.$$

The equality between the two integrals is obtained by substituting u = x - t as before.

f * g is periodic with period 1, since g(x + 1 - t) = g(x - t).

14 / 39

Bob Hough Math 141: Lecture 23 December 5, 2016

Theorem

Let f and g be Riemann integrable on \mathbb{R}/\mathbb{Z} . Then f * g is continuous.

Proof.

Let $|g| \leq M$. Given $\epsilon > 0$, recall from Homework #6, Problem 2 that there exists a continuous function f_1 such that $\int_0^1 |f(x) - f_1(x)| dx < \frac{\epsilon}{3M}$. Observe

$$|f * g(x) - f_1 * g(x)| = \left| \int_0^1 (f(t) - f_1(t))g(x - t)dt \right| \\ \leq M \int_0^1 |f(t) - f_1(t)|dt < \frac{\epsilon}{3}.$$

16 / 39

Proof.

Since f_1 is absolutely continuous, there is $\delta>0$ such that, for $x\in\mathbb{R}$, if $|x-y|<\delta$ then $|f_1(x)-f_1(y)|<\frac{\epsilon}{3M}$. Thus for $|x-y|<\delta$,

$$|f_1 * g(x) - f_1 * g(y)| = \left| \int_0^1 g(t)(f_1(x-t) - f_1(y-t))dt \right|$$

$$\leq M \int_0^1 |f_1(x-t) - f_1(y-t)|dt < \frac{\epsilon}{3}.$$

Combining these estimates,

$$|f * g(y) - f * g(x)| =$$

$$|(f * g(y) - f_1 * g(y)) + (f_1 * g(y) - f_1 * g(x)) + (f_1 * g(x) - f * g(x))|$$

$$\leq |f * g(y) - f_1 * g(y)| + |f_1 * g(y) - f_1 * g(x)| + |f_1 * g(x) - f * g(x)|$$

$$< \epsilon.$$

Theorem

Let f be Riemann integrable and let g be a trigonometric polynomial, that is, $g(x) = \sum_{n \in S} c_n e^{2\pi i n x}$ for some finite set of frequencies S. Then

$$f * g(x) = \sum_{n \in S} \hat{f}(n)c_n e^{2\pi i n x}.$$

Proof.

Calculate

$$f * g(x) = \int_0^1 f(t) \sum_{n \in S} c_n e^{2\pi i n(x-t)} dt$$
$$= \sum_{n \in S} c_n e^{2\pi i n x} \int_0^1 f(t) e^{-2\pi i n t} dt = \sum_{n \in S} \hat{f}(n) c_n e^{2\pi i n x}.$$

Definition

Let $N \ge 1$. The function

$$K_N(x) = \frac{D_N(x)^2}{2N+1} = \frac{1}{2N+1} \left(\frac{\sin 2\pi (N+\frac{1}{2})x}{\sin \pi x} \right)^2$$

is called Fejér's kernel. It has Fourier coefficients

$$\hat{K}_N(n) = \left\{ egin{array}{ll} rac{2N+1-|n|}{2N+1} & |n| \leq 2N \\ 0 & ext{otherwise} \end{array}
ight..$$

Bob Hough Math 141: Lecture 23 December 5, 2016 19 / 39

To check the claim regarding the Fourier coefficients, expand the square:

$$D_N(x)^2 = \left(\sum_{n=-N}^N e^{2\pi i n x}\right)^2$$

$$= \sum_{n_1, n_2 = -N}^N e^{2\pi i (n_1 + n_2) x}$$

$$= \sum_{n=-2N}^{2N} (2N + 1 - |n|) e^{2\pi i n x}.$$

Theorem

Fejér's kernel satisfies the following properties.

- **1** $K_N(x) \ge 0$
- $\int_0^1 K_N(x) dx = 1$
- For each fixed $\delta > 0$, $\lim_{N \to \infty} \int_{\delta}^{1-\delta} K_N(x) dx = 0$.

These properties make $K_N(x)$ a 'summability kernel'.

Bob Hough

Proof.

The first property holds since K_N is proportional to D_N^2 . The second property is the Fourier coefficient of K_N at 0. To prove the third, use

$$K_N(x) = \frac{1}{2N+1} \left(\frac{\sin 2\pi (N+\frac{1}{2})x}{\sin \pi x} \right)^2 \le \frac{1}{2N+1} \left(\frac{1}{\sin \pi x} \right)^2.$$

Thus

$$\int_{\delta}^{1-\delta} K_N(x) dx \leq \frac{1}{2N+1} \int_{\delta}^{1-\delta} \frac{1}{(\sin \pi x)^2} dx$$

tends to 0 as $N \to \infty$.

Bob Hough

Theorem

Let f be continuous on \mathbb{R}/\mathbb{Z} . Then $f * K_N$ converges to f uniformly as $N \to \infty$.

• The trigonometric polynomial $f * K_N$ is given by

$$f * K_N(x) = \sum_{n=-2N}^{2N} \frac{2N+1-|n|}{2N+1} \hat{f}(n)e^{2\pi inx}$$

and is a Cesàro mean of the Fourier series for f.

• This theorem demonstrates that the trigonometric polynomials are dense in the space of continuous functions on \mathbb{R}/\mathbb{Z} .

Proof.

Since f is uniformly continuous, given $\epsilon>0$ choose $\delta>0$ so that $|x-y|<\delta$ implies $|f(x)-f(y)|<\frac{\epsilon}{2}$. Let f be bounded by M, and choose N sufficiently large such that

$$\int_{\delta}^{1-\delta} K_N(x) dx < \frac{\epsilon}{4M}.$$

Then, using that $\int_0^1 K_N(x) dx = 1$,

$$|f(x) - f * K_N(x)| = \left| \int_0^1 (f(x) - f(x - t)) K_N(t) dt \right|$$

$$\leq \int_0^1 |f(x) - f(x - t)| K_N(t) dt.$$

101151111111

Proof.

Recall

$$|f(x) - f * K_N(x)| \le \int_0^1 |f(x) - f(x - t)| K_N(t) dt$$

= $\int_{-\delta}^{\delta} |f(x) - f(x - t)| K_N(t) dt + \int_{\delta}^{1 - \delta} |f(x) - f(x - t)| K_N(t) dt.$

Note that we've used the one-periodicity to replace the integral of integration with $[-\delta,1-\delta]$. In the first integral, bound $|f(x)-f(x-t)|<\frac{\epsilon}{2}$ to estimate

$$\int_{-\delta}^{\delta} |f(x) - f(x-t)| K_N(t) dt < \frac{\epsilon}{2} \int_0^1 K_N(t) dt = \frac{\epsilon}{2}.$$

26 / 39

Bob Hough Math 141: Lecture 23 December 5, 2016

Proof.

In the integral from δ to $1 - \delta$, bound $|f(x) - f(x - t)| \le 2M$ to estimate

$$\int_{\delta}^{1-\delta} |f(x)-f(x-t)| K_N(t) dt \leq 2M \int_{\delta}^{1-\delta} K_N(t) dt < 2M \frac{\epsilon}{4M} = \frac{\epsilon}{2}.$$

Combining these estimates,

$$\int_0^1 |f(x)-f(x-t)| K_N(t) dt < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$

completing the proof.

Theorem

Let f be integrable on [0,1]. Then for any $N \ge 1$,

$$\int_{0}^{1} |f * K_{N}(x)| dx \leq \int_{0}^{1} |f(x)| dx.$$

Proof.

By positivity of K_N ,

$$\int_{0}^{1} |f * K_{N}(x)| dx = \int_{0}^{1} \left| \int_{0}^{1} f(t) K_{N}(x-t) \right| dt dx$$

$$\leq \int_{0}^{1} \int_{0}^{1} |f(t)| K_{N}(x-t) dt dx$$

$$= \sum_{n=-2N}^{2N} \frac{2N+1-|n|}{2N+1} \int_{0}^{1} \int_{0}^{1} |f(t)| e^{2\pi i n(x-t)} dt dx$$

$$= \sum_{n=-2N}^{2N} \frac{2N+1-|n|}{2N+1} \int_{0}^{1} e^{2\pi i n x} \int_{0}^{1} |f(t)| e^{-2\pi i n t} dt dx$$

The inner integral over t is a constant which depends on n but not x. Treating this as fixed we may integrate in x to eliminate all but n=0, which leaves $\int_0^1 |f * K_N(x)| dx \le \int_0^1 |f(t)| dt$.

Theorem

Let f be integrable on [0,1]. Then

$$\lim_{N\to\infty}\int_0^1|f(x)-f*K_N(x)|dx=0.$$

Proof.

Given $\epsilon>0$, choose continuous f_1 such that $\int_0^1|f(x)-f_1(x)|dx<\frac{\epsilon}{3}$. Choose N sufficiently large so that $|f_1(x)-f_1*K_N(x)|<\frac{\epsilon}{3}$, uniformly in x. Then

$$\int_{0}^{1} |f(x) - f * K_{N}(x)| dx$$

$$= \int_{0}^{1} |(f - f_{1})(x) + (f_{1} - f_{1} * K_{N})(x) + ((f - f_{1}) * K_{N})(x)| dx$$

$$\leq \int_{0}^{1} |(f - f_{1})(x)| dx + \int_{0}^{1} |(f_{1} - f_{1} * K_{N})(x)| dx$$

$$+ \int_{0}^{1} |f - f_{1}| * K_{N}(x) dx$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

Theorem (Parseval's theorem)

Let f and g be Riemann integrable on \mathbb{R}/\mathbb{Z} . Then

$$\int_0^1 |f(x)|^2 dx = \sum_{n \in \mathbb{Z}} \left| \hat{f}(n) \right|^2$$

and

$$\int_0^1 f(x)\overline{g}(x)dx = \sum_{n \in \mathbb{Z}} \hat{f}(n)\overline{\hat{g}(n)}.$$

32 / 39

Proof.

Observe

$$\hat{\overline{g}}(n) = \int_0^1 \overline{g}(x)e^{-2\pi i n x} dx = \overline{\int_0^1 g(x)e^{2\pi i n x} dx} = \overline{\hat{g}(-n)}.$$

Calculate

$$\int_{0}^{1} |f(x)|^{2} dx = \lim_{N \to \infty} \int_{0}^{1} f(x) (\overline{f} * K_{N}(x)) dx$$

$$= \lim_{N \to \infty} \int_{0}^{1} f(x) \sum_{n = -2N}^{2N} \frac{2N + 1 - |n|}{2N + 1} \overline{\hat{f}(-n)} e^{2\pi i n x} dx$$

$$= \lim_{N \to \infty} \sum_{n = -2N}^{2N} \frac{2N + 1 - |n|}{2N + 1} |\hat{f}(-n)|^{2}.$$

Proof.

To check that

$$\lim_{N\to\infty}\sum_{n=-2N}^{2N}\frac{2N+1-|n|}{2N+1}\left|\hat{f}(-n)\right|^2=\sum_{n\in\mathbb{Z}}\left|\hat{f}(n)\right|^2,$$

observe that for each fixed n, $\frac{2N+1-|n|}{2N+1}\left|\hat{f}(n)\right|^2$ increases to $\left|\hat{f}(n)\right|^2$. Thus, as a function of N the left hand side is increasing and bounded above, so converges to a limit, which is at most the right hand side. For each M the limit is bounded below by $\sum_{n=-M}^{M}\left|\hat{f}(n)\right|^2$, which tends to $\sum_{n\in\mathbb{Z}}\left|\hat{f}(n)\right|^2$ as $M\to\infty$.

Proof.

For the second statement, calculate in the same way

$$\int_{0}^{1} f(x)\overline{g(x)}dx = \lim_{N \to \infty} \sum_{n=-2N}^{2N} \frac{2N+1-|n|}{2N+1} \hat{f}(-n)\overline{\hat{g}(-n)}.$$

Argue as before, using Cauchy-Schwarz to bound the tail

$$\left| \sum_{M < |n| \le 2N} \left(\frac{2N + 1 - |n|}{2N + 1} \right) \hat{f}(n) \overline{\hat{g}(n)} \right|^{2}$$

$$\leq \left(\sum_{|n| > M} \left| \hat{f}(n) \right|^{2} \right) \left(\sum_{|n| > M} |\hat{g}(n)|^{2} \right).$$

Determination of $\zeta(2)$

Theorem

$$\zeta(2)=\frac{\pi^2}{6}.$$

Determination of $\zeta(2)$

Proof.

Recall from last lecture that the square signal

$$s(x) = \begin{cases} 1 & 0 \le x < \frac{1}{2} \\ -1 & \frac{1}{2} \le x < 1 \end{cases}$$

has Fourier coefficients

$$\hat{s}(n) = \left\{ \begin{array}{ll} 0 & n \text{ even} \\ \frac{-2i}{\pi n} & n \text{ odd} \end{array} \right.$$

By Parseval,

$$1 = \int_0^1 |s(x)|^2 dx = \sum_{n \in \mathbb{Z}} |\hat{s}(n)|^2 = \frac{8}{\pi^2} \sum_{n > 0, \text{ odd } n} \frac{1}{n^2}.$$

Determination of $\zeta(2)$

Proof.

Thus

$$\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$= \frac{1}{1 - 2^{-2}} \sum_{\substack{n > 0, \text{ odd}}} \frac{1}{n^2} = \frac{4}{3} \frac{\pi^2}{8} = \frac{\pi^2}{6}.$$

38 / 39

Algebraic properties of convolution

Theorem

Let f, g, h be integrable functions. Then

- 0 f * g = g * f
- 2 f * (g * h) = (f * g) * h
- **3** For each n, $\widehat{f * g}(n) = \widehat{f}(n)\widehat{g}(n)$

Proof.

All of these properties hold for trigonometric polynomials, where convolution becomes multiplication under Fourier transform. Use that the trigonometric polynomials are dense with respect to integration (L^1 norm).