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Example

Recall last class we proved
Theorem

Fort >0,

o .

_osinx T

e X "dx = = — arctan t.
0 X 2

by differentiating under the integral. Now we consider the behavior at
t = 0. This is a continuous analogue of evaluating a power series at the
boundary of the radius of convergence.
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Example

Theorem

We have

o & = E DA
Bob Hough Math 141: Lecture 22




Example

Proof.

Integrate by parts in the integral

[eo) 2 —tA [e%)
t 1
e X =& cosA— e ™ — 4+ = | cos xdx.
A X A 2

A X X
Bound

X A ’
o COSX “dx 1
7 dx| < 2= A
A X A X A
Thus -
_..sinx 3
tX_dX S_
A X A
O
v
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Example

Proof.
Similarly, integrate by parts in the integral

o0 H o0
sin x cos A COS X
dx = — P dx.
A X A A X

Thus |on° Sinde’ < %. On [0, A], e_tx% — % uniformly, so

X

A —tx i
™ . . e Sin X

_ 0(1/A)+ /OA SInX

X
- O(1/A)+/ ?dx.

0

Letting A — oo completes the proof.
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Infinite products

Definition
Given a sequence {a,}%° ; the product

o0

H(l + an)

n=1

is defined to be the limit, if it exists and is non-zero, of the sequence of
partial products {P,}>°,,

P, = ﬁ(l aF aj).

Jj=1
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Infinite products

Theorem

Given a sequence {an}°°,, a, # —1, whose series Y a, is absolutely
convergent, the product

o

11 +a0)

n=1

is convergent. In this case we say that the product converges absolutely.
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Infinite products

Proof.

Since 3 |a,| converges, |a,| — 0. Thus there is N such that |a,| < 3 for
n> N. The sum

Z log(1+ a,) = Z an + 0(a?)
n=N n=N

converges absolutely by comparison with Y7, |as| by using the formula
log(1 + a,) = an + O(a2) which holds as |a,| — 0. Thus

H (1+a,) =exp (Z log(1 + a,,))
n=N

n=N

converges, as desired. [
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Euler's product formula for the zeta function

Recall that the Riemann zeta function is defined in R(s) > 1 by the

formula
=1
()= p
n=1
Theorem
For ®(s) > 1,
1
C(S) = H 1 T o
p - P

The product, which is taken over the set of primes in increasing order,
converges absolutely.
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Euler's product formula for the zeta function

Proof.
o Calculate
1 p—°
—1= .
1—p—s 1—ps
@ Set s = x + it with x and t real. Then for C = # > 0,
1 p>
-1 < < Cp™ ™.
‘1_,,_5 ‘_ I—p>*= "

@ The absolute convergence follows from

1 1 =1
> 5—1‘§C§;<C;;<oo

P 1=

which holds since x > 1.
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Euler's proof of the infinitude of primes

Theorem

There are infinitely many prime numbers.

Proof.
Since the sum "%, 1 diverges, ((x) — oo as x | 1. This would be false
if the product
1
===

were finite. O
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The partition function

@ Denote p(n) the partition function of n, which counts the number of
ways of writing n as the sum of one or more integers in non-increasing
order.

e For instance, p(4) = 5 since
4=3+1=24+2=2+1+1=1+1+1+1

@ It's conventional to define p(0) = 1. The first few values of p are
given by p(1) =1, p(2) =2, p(3) =3, p(4) =5, p(5) =T7.
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The partition function

Theorem (Hardy-Ramanujan, 1918)
As n — oo,

p(n) = (1+ 0(1))4n\/§

exp (71'
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The partition function

Theorem

For |x| < 1,

> p(mx" =11 1;
n=0
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The partition function

Proof.

@ The sum Y72, p(n)x" converges absolutely in [x| < 1 by using the

Hardy-Ramanujan asymptotic.

@ Define
N 1 [e’9) Ny
fn(x) = H Tk ZPN(J)X
k=1 j=0

by writing =% = 1+ x¥ 4+ x?K + ... and using the absolute

convergence to justify the use of Cauchy products.

@ The product [];2, ﬁ converges absolutely to a function f(x),

since 3 |x|¥ converges.

Bob Hough Math 141: Lecture 22 November 30, 2016

15 / 27



The partition function

Proof.

e For j < N, pn(j) = p(j), by using x?* to track the case that k
appears a times in a partition of n in the expansion

1

— =14+ xF+ x4+

Also, pn(J) is increasing as a function of N.

o It follows that limy_soo Zf.io pn(j)x’ exists, and is equal to

> 20 p(j)x/, since szo pn(j)x = ZjN:o p(j)x/, and the remaining
tail satisfies

> en)| <D p()IxY
j>N J>N

which tends to 0 as N — oo.

DJ
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Rankin's trick

A cheap version of the Ramanujan-Hardy asymptotic may be proved easily.
The method of proof is known as Rankin’s trick.

Theorem

For each § > 0 there is a constant C = C(0) > 0 such that
p(n) < C(6) exp(6n).

This theorem is sufficient to obtain the convergence in )~ p(n)x" for
|x| <1 by setting |x| = e* and choosing 20 = « in the theorem to obtain

[e o]

Zyp X" < C(0)) el < oo,

n=0

A more careful version of the proof of the theorem gives

p(n) < exp (O(v/nlogn)).
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Rankin's trick

Proof.
Choose 0 < x = e~® < 1 in the expression [T}_; 72z = Y72 pn(j)¥.
Since pp(n) = p(n), we can drop all but one term to obtain
(n)x" < T2
2 - 1—xk’
=1
Thus
- 1 snTr 1
on n
pln) < e kl:Ill—xk =€ 1:111—xk

The product converges absolutely to a constant C(4), since
k k
1—_1xk —1= 7% < {= and > xX converges.
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Fourier series

o Consider the set of functions {€2™™} 7.

@ These functions are 1 periodic by Euler’'s formula. We sometimes
indicate this by saying that they are defined on R/Z.

@ These functions have integral

1
2minx _ 1 n=20
/Oe dx‘{o n+0
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Fourier series

@ The integral formula implies the following orthogonality relation

1 1
/ Q2T IMX G2reinX ofye — / e2mi(m=n)x gy { 1 m=n
0 0 0 m%#n

2minx

e A trigonometric polynomial is a finite sum P(x) = > _ccpe

where S is a finite set of frequencies.

neS

o Calculate, using orthogonality,

1 1 )
/0 [P(x)Pdx = /0 > e e =y e

ni,meS nes

Bob Hough Math 141: Lecture 22 November 30, 2016 20 / 27



Fourier series
Definition
Let f be integrable on [0,1]. The Fourier coefficients of f are defined by

1
)A‘(n):/ f(x)e 2minxdx.
0

The Fourier series of f is the series

x) ~ Y F(n)e™i™,

nez

No equality is asserted by the notation ~. We say that the Fourier series
converges to f at the point x if

= |lim g f 27””’(.
N—>oo
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Fourier series

Wagnitude

onase @

Image of Tomas Boril.
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Example

Theorem

Let s(x) denote the square function which is I-periodic

) = { »

This function has Fourier coefficients

Ni= O
IA INA
= N

X <
X <

~ 0 n even
st ={ % .

—= n odd
Combining n and —n terms,
4 1 .
s(x) ~ = Z - sin(27nx).
n>0, odd
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Example

Proof.
We have

1

2 2 _ominx
5(n) = / e dx —
0

This vanishes for n = 0. For n # 0,

Nh—‘\
[y

-1

2min

(%

(n)

The quantity in brackets is 0 if n even and —4 if n odd.

[_1 + 2e—7rin _ e—27Tin] .

e—27rmx dx.
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Dirichlet’s kernel

Dirichlet’s kernel is the function

N

DN(X) _ Z e27rinx _

n=—N

sin2m(N + 3)x

sin Tx

This satisfies

/1 Dy(t)dt = 1.
0
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Dirichlet’s kernel

The partial sums of the Fourier series of f may be expressed as

1 N 1
/ f(t)DN(X — t)dt = Z e27rinx/ f(t)e*27Tintdt
° n=—N 0

N
— Z ’f‘(n)e27rinx.

n=—N
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Bessel's inequality

Theorem
Let S C 7Z be a finite set of frequencies. For any constants {cp}nes,

1 2 1 )
dx < / f— cpe™nx
/ (r-%

neS

2
F(x) = > F(n)e?™™ dx.

neS
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