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Example

Recall last class we proved

Theorem

For t > 0, ∫ ∞
0

e−tx
sin x

x
dx =

π

2
− arctan t.

by differentiating under the integral. Now we consider the behavior at
t = 0. This is a continuous analogue of evaluating a power series at the
boundary of the radius of convergence.
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Example

Theorem

We have ∫ ∞
0

sin x

x
dx =

π

2
.
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Example

Proof.

Integrate by parts in the integral∫ ∞
A

e−tx
sin x

x
dx =

e−tA

A
cos A−

∫ ∞
A

e−tx
(

t

x
+

1

x2

)
cos xdx .

Bound ∣∣∣∣∫ ∞
A

e−tx
t

x
cos xdx

∣∣∣∣ ≤ t

A

∫ ∞
A

e−txdx =
e−tA

A
,∣∣∣∣∫ ∞

A
e−tx

cos x

x2
dx

∣∣∣∣ ≤ ∫ ∞
A

dx

x2
=

1

A
.

Thus ∣∣∣∣∫ ∞
A

e−tx
sin x

x
dx

∣∣∣∣ ≤ 3

A
.
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Example

Proof.

Similarly, integrate by parts in the integral∫ ∞
A

sin x

x
dx =

cos A

A
−
∫ ∞
A

cos x

x2
dx .

Thus
∣∣∫∞

A
sin x
x dx

∣∣ ≤ 2
A . On [0,A], e−tx sin x

x → sin x
x uniformly, so

π

2
= lim

t↓0
F (t) = O(1/A) + lim

t↓0

∫ A

0

e−tx sin x

x
dx

= O(1/A) +

∫ A

0

sin x

x
dx

= O(1/A) +

∫ ∞
0

sin x

x
dx .

Letting A→∞ completes the proof.
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Infinite products

Definition

Given a sequence {an}∞n=1 the product

∞∏
n=1

(1 + an)

is defined to be the limit, if it exists and is non-zero, of the sequence of
partial products {Pn}∞n=1,

Pn =
n∏

j=1

(1 + aj).
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Infinite products

Theorem

Given a sequence {an}∞n=1, an 6= −1, whose series
∑

an is absolutely
convergent, the product

∞∏
n=1

(1 + an)

is convergent. In this case we say that the product converges absolutely.
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Infinite products

Proof.

Since
∑
|an| converges, |an| → 0. Thus there is N such that |an| < 1

2 for
n ≥ N. The sum

∞∑
n=N

log(1 + an) =
∞∑

n=N

an + O(a2n)

converges absolutely by comparison with
∑∞

n=N |an| by using the formula
log(1 + an) = an + O(a2n) which holds as |an| → 0. Thus

∞∏
n=N

(1 + an) = exp

( ∞∑
n=N

log(1 + an)

)

converges, as desired.

Bob Hough Math 141: Lecture 22 November 30, 2016 8 / 27



Euler’s product formula for the zeta function

Recall that the Riemann zeta function is defined in <(s) > 1 by the
formula

ζ(s) =
∞∑
n=1

1

ns
.

Theorem

For <(s) > 1,

ζ(s) =
∏
p

1

1− 1
ps
.

The product, which is taken over the set of primes in increasing order,
converges absolutely.
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Euler’s product formula for the zeta function

Proof.

Calculate
1

1− p−s
− 1 =

p−s

1− p−s
.

Set s = x + it with x and t real. Then for C = 1
1−2−x > 0,∣∣∣∣ 1

1− p−s
− 1

∣∣∣∣ ≤ p−x

1− p−x
≤ Cp−x .

The absolute convergence follows from

∑
p

∣∣∣∣ 1

1− p−s
− 1

∣∣∣∣ ≤ C
∑
p

1

px
< C

∞∑
n=1

1

nx
<∞

which holds since x > 1.
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Euler’s proof of the infinitude of primes

Theorem

There are infinitely many prime numbers.

Proof.

Since the sum
∑∞

n=1
1
n diverges, ζ(x)→∞ as x ↓ 1. This would be false

if the product

ζ(x) =
∏
p

1

1− p−x

were finite.
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The partition function

Denote p(n) the partition function of n, which counts the number of
ways of writing n as the sum of one or more integers in non-increasing
order.

For instance, p(4) = 5 since

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

It’s conventional to define p(0) = 1. The first few values of p are
given by p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7.
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The partition function

Theorem (Hardy-Ramanujan, 1918)

As n→∞,

p(n) = (1 + o(1))
1

4n
√

3
exp

(
π

√
2n

3

)
.
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The partition function

Theorem

For |x | < 1,
∞∑
n=0

p(n)xn =
∞∏
k=1

1

1− xk
.
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The partition function

Proof.

The sum
∑∞

n=0 p(n)xn converges absolutely in |x | < 1 by using the
Hardy-Ramanujan asymptotic.

Define

fN(x) =
N∏

k=1

1

1− xk
=
∞∑
j=0

pN(j)x j

by writing 1
1−xk = 1 + xk + x2k + ... and using the absolute

convergence to justify the use of Cauchy products.

The product
∏∞

k=1
1

1−xk converges absolutely to a function f (x),

since
∑
|x |k converges.
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The partition function

Proof.

For j ≤ N, pN(j) = p(j), by using xak to track the case that k
appears a times in a partition of n in the expansion

1

1− xk
= 1 + xk + x2k + ....

Also, pN(j) is increasing as a function of N.

It follows that limN→∞
∑∞

j=0 pN(j)x j exists, and is equal to∑∞
j=0 p(j)x j , since

∑N
j=0 pN(j)x j =

∑N
j=0 p(j)x j , and the remaining

tail satisfies ∣∣∣∣∣∣
∑
j>N

pN(j)x j

∣∣∣∣∣∣ ≤
∑
j>N

p(j)|x |j

which tends to 0 as N →∞.
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Rankin’s trick

A cheap version of the Ramanujan-Hardy asymptotic may be proved easily.
The method of proof is known as Rankin’s trick.

Theorem

For each δ > 0 there is a constant C = C (δ) > 0 such that
p(n) ≤ C (δ) exp(δn).

This theorem is sufficient to obtain the convergence in
∑

n p(n)xn for
|x | < 1 by setting |x | = eα and choosing 2δ = α in the theorem to obtain

∞∑
n=0

|p(n)xn| ≤ C (δ)
∞∑
n=0

e(δ−α)n <∞.

A more careful version of the proof of the theorem gives

p(n) ≤ exp
(
O(
√

n log n)
)
.
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Rankin’s trick

Proof.

Choose 0 < x = e−δ < 1 in the expression
∏n

k=1
1

1−xk =
∑∞

j=0 pn(j)x j .
Since pn(n) = p(n), we can drop all but one term to obtain

p(n)xn ≤
n∏

k=1

1

1− xk
.

Thus

p(n) ≤ eδn
n∏

k=1

1

1− xk
≤ eδn

∞∏
k=1

1

1− xk
.

The product converges absolutely to a constant C (δ), since
1

1−xk − 1 = xk

1−xk <
xk

1−x and
∑

k xk converges.

Bob Hough Math 141: Lecture 22 November 30, 2016 18 / 27



Fourier series

Consider the set of functions {e2πinx}n∈Z.

These functions are 1 periodic by Euler’s formula. We sometimes
indicate this by saying that they are defined on R/Z.

These functions have integral∫ 1

0
e2πinxdx =

{
1 n = 0
0 n 6= 0

.

Bob Hough Math 141: Lecture 22 November 30, 2016 19 / 27



Fourier series

The integral formula implies the following orthogonality relation∫ 1

0
e2πimxe2πinxdx =

∫ 1

0
e2πi(m−n)xdx =

{
1 m = n
0 m 6= n

.

A trigonometric polynomial is a finite sum P(x) =
∑

n∈S cne2πinx

where S is a finite set of frequencies.

Calculate, using orthogonality,∫ 1

0
|P(x)|2dx =

∫ 1

0

∑
n1,n2∈S

cn1cn2e2πi(n1−n2)xdx =
∑
n∈S
|cn|2.
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Fourier series

Definition

Let f be integrable on [0, 1]. The Fourier coefficients of f are defined by

f̂ (n) =

∫ 1

0
f (x)e−2πinxdx .

The Fourier series of f is the series

f (x) ∼
∑
n∈Z

f̂ (n)e2πinx .

No equality is asserted by the notation ∼. We say that the Fourier series
converges to f at the point x if

f (x) = lim
N→∞

N∑
n=−N

f̂ (n)e2πinx .

Bob Hough Math 141: Lecture 22 November 30, 2016 21 / 27



Fourier series

Image of Tomas Boril.
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Example

Theorem

Let s(x) denote the square function which is 1-periodic

s(x) =

{
1 0 ≤ x < 1

2
−1 1

2 ≤ x < 1

This function has Fourier coefficients

ŝ(n) =

{
0 n even
−2i
πn n odd

.

Combining n and −n terms,

s(x) ∼ 4

π

∑
n>0, odd

1

n
sin(2πnx).

Bob Hough Math 141: Lecture 22 November 30, 2016 23 / 27



Example

Proof.

We have

ŝ(n) =

∫ 1
2

0
e−2πinxdx −

∫ 1

1
2

e−2πinxdx .

This vanishes for n = 0. For n 6= 0,

ŝ(n) =
−1

2πin

[
−1 + 2e−πin − e−2πin

]
.

The quantity in brackets is 0 if n even and −4 if n odd.
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Dirichlet’s kernel

Dirichlet’s kernel is the function

DN(x) =
N∑

n=−N
e2πinx =

sin 2π(N + 1
2)x

sinπx
.

This satisfies ∫ 1

0
DN(t)dt = 1.
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Dirichlet’s kernel

The partial sums of the Fourier series of f may be expressed as∫ 1

0
f (t)DN(x − t)dt =

N∑
n=−N

e2πinx
∫ 1

0
f (t)e−2πintdt

=
N∑

n=−N
f̂ (n)e2πinx .
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Bessel’s inequality

Theorem

Let S ⊂ Z be a finite set of frequencies. For any constants {cn}n∈S ,

∫ 1

0

∣∣∣∣∣f (x)−
∑
n∈S

f̂ (n)e2πinx

∣∣∣∣∣
2

dx ≤
∫ 1

0

∣∣∣∣∣f −∑
n∈S

cne2πinx

∣∣∣∣∣
2

dx .
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