Math 141: Lecture 20 Sequences and series of functions

Bob Hough

November 21, 2016

Bob Hough

Math 141: Lecture 20

November 21, 2016 1 / 45

Definition

Let $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ be two series. Their *Cauchy product* is the series ∞

$$\sum_{n=0}^{\infty} c_n, \qquad c_n = a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0.$$

- 2

(日) (周) (三) (三)

The following example shows that it is possible that $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ converge, but their Cauchy product $\sum_{n=0}^{\infty} c_n$ does not converge.

- Let $a_n = b_n = \frac{(-1)^n}{\sqrt{n+1}}$. The series $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$ converges by the alternating series test.
- The Cauchy product has $c_n = (-1)^n \sum_{k=0}^n \frac{1}{\sqrt{k+1}\sqrt{n-k+1}}$.
- By the Inequality of the Arithmetic Mean-Geometric Mean,

$$\sqrt{(k+1)(n-k+1)} \leq \frac{n+2}{2},$$

and hence $|c_n| \ge \sum_{k=0}^n \frac{2}{n+2} = \frac{2(n+1)}{n+2}$. • Since $|c_n| \to 1$ as $n \to \infty$, the series does not converge.

Theorem

Let $\sum_{n=0}^{\infty} a_n = A$ converge absolutely, and $\sum_{n=0}^{\infty} b_n = B$ converge. Denote by $\{c_n\}_{n=0}^{\infty}$ the Cauchy product of $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$. Then

$$\sum_{n=0}^{\infty} c_n = AB.$$

-	
Lab	u ar b
בו אונו ב	וועוו
	-0

- 3

くほと くほと くほと

Proof of Cauchy Product formula. See Rudin, pp. 74-75.

- Define partial sums $A_n = \sum_{k=0}^n a_k$, $B_n = \sum_{k=0}^n b_k$, $C_n = \sum_{k=0}^n c_k$. Set $\beta_n = B_n - B$.
- Write

$$C_n = a_0 b_0 + (a_0 b_1 + a_1 b_0) + \dots + (a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0)$$

= $a_0 B_n + a_1 B_{n-1} + \dots + a_n B_0$
= $a_0 (B + \beta_n) + a_1 (B + \beta_{n-1}) + \dots + a_n (B + \beta_0)$
= $A_n B + a_0 \beta_n + a_1 \beta_{n-1} + \dots + a_n \beta_0.$

• Define
$$\gamma_n = a_0\beta_n + a_1\beta_{n-1} + \cdots + a_n\beta_0$$
.

• Since $A_n B \to AB$ as $n \to \infty$, it suffices to check that $\gamma_n \to 0$.

- 3

(日) (周) (三) (三)

Proof of Cauchy Product formula. See Rudin, pp. 74-75.

- Recall that $\beta_n = B_n B$ tends to 0 with *n*, and that we wish to show that $\gamma_n = a_0\beta_n + a_1\beta_{n-1} + \cdots + a_n\beta_0$ tends to 0, also.
- Define $\alpha = \sum_{n=0}^{\infty} |a_n|$.
- Given $\epsilon > 0$, choose N such that n > N implies $|\beta_n| < \epsilon$.

Bound

$$|\gamma_n| \leq \sum_{k=0}^N |a_{n-k}\beta_k| + \sum_{k=N+1}^n |a_{n-k}\beta_k| \leq \sum_{k=0}^N |a_{n-k}\beta_k| + \epsilon\alpha.$$

• Since $a_n \to 0$ as $n \to \infty$, if *n* is sufficiently large, then $\sum_{k=0}^{N} |a_{n-k}\beta_k| < \epsilon$, whence $|\gamma_n| \le (1+\alpha)\epsilon$. Letting $\epsilon \downarrow 0$ completes the proof.

- 3

イロト イポト イヨト イヨト

The exponential function is often defined as the power series

$$E(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

which converges absolutely in the whole complex plane by the ratio test. We check that this series satisfies the expected multiplicative property.

$$E(z)E(w) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{z^{k} w^{n-k}}{k!(n-k)!}$$

= $\sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n} {n \choose k} z^{k} w^{n-k}$
= $\sum_{n=0}^{\infty} \frac{(z+w)^{n}}{n!}$
= $E(z+w).$

(日) (周) (三) (三)

Example with order of limits

Consider the following:

$$\lim_{m \to \infty} \left(\lim_{n \to \infty} \frac{m}{m+n} \right) = \lim_{m \to \infty} 0 = 0$$
$$\lim_{n \to \infty} \left(\lim_{m \to \infty} \frac{m}{m+n} \right) = \lim_{n \to \infty} 1 = 1.$$

Thus, the order in which limits are taken matters.

Recall the definition of pointwise convergence.

Definition

A sequence of functions $\{f_n\}_{n=1}^{\infty}$ converges pointwise on a set E if, for each $x \in E$, $\lim_{n\to\infty} f_n(x)$ exists. The function f defined on E by

$$f(x) = \lim_{n \to \infty} f_n(x)$$

is called the *limit function*.

Uniform convergence

Recall that we have defined the supremum of a set which is bounded above to be the least upper bound. If a set is not bounded above, define its supremum to be ∞ .

Definition

A sequence of functions $\{f_n\}_{n=1}^{\infty}$ converges uniformly on a set E if there exists a function f on E such that, for each $\epsilon > 0$ there exists N > 0 such that, for n > N,

$$\sup_{x\in E} |f(x)-f_n(x)| < \epsilon.$$

The sequence is said to be *uniformly Cauchy* on *E* if, for each $\epsilon > 0$ there exists N > 0 such that m, n > N implies

$$\sup_{x\in E}|f_m(x)-f_n(x)|<\epsilon.$$

Let
$$f_n(x) = \frac{x^2}{(1+x^2)^n}$$
 and set
$$f(x) = \sum_{n=0}^{\infty} f_n(x) = \sum_{n=0}^{\infty} \frac{x^2}{(1+x^2)^n}.$$

Note that $f_n(0) = 0$ for all n, so f(0) = 0. For $x \neq 0$, summing the geometric series gives

$$f(x) = \frac{x^2}{1 - \frac{1}{1 + x^2}} = 1 + x^2.$$

Thus the sum converges pointwise to a discontinuous function.

3

(日) (周) (三) (三)

Define for m = 1, 2, ...,

$$f_m(x) = \lim_{n \to \infty} \cos(m!\pi x)^{2n}.$$

This function is 1 if and only if m!x is an integer. The function

 $\lim_{m\to\infty}f_m(x)$

is 1 at rational x and 0 at irrational x, hence is not Riemann integrable.

- Let $f_n(x) = \frac{\sin nx}{\sqrt{n}}$. This sequence of functions converges uniformly to 0.
- $f'_n(x) = \sqrt{n} \cos nx$. The sequence of derivatives does not converge even pointwise, for instance, at 0.
- This example shows that a condition stronger than uniform convergence is required to guarantee the convergence of derivatives.

Let
$$f_n(x) = nx(1-x^2)^n$$
. For each $x \in [0,1]$, $\lim_{n\to\infty} f_n(x) = 0$. Thus

$$\int_0^1 \lim_{n\to\infty} f_n(x)dx = \int_0^1 0dx = 0.$$

On the other hand,

$$\lim_{n\to\infty}\int_0^1 f_n(x)dx = \lim_{n\to\infty}n\int_0^1 x(1-x^2)^n dx = \lim_{n\to\infty}\frac{n}{2n+2} = \frac{1}{2}.$$

3

<ロ> (日) (日) (日) (日) (日)

Theorem (The Weierstrass M-test)

Let $\sum_{n=1}^{\infty} u_n$ be a series of functions which converges pointwise to a function u on a set S. Suppose that there are positive constants $\{M_n\}_{n=1}^{\infty}$ such that $\sum_{n=1}^{\infty} M_n < \infty$ and such that

$$0\leq |u_n(x)|\leq M_n$$

for all $x \in S$. Then $\sum_{n=1}^{\infty} u_n(x)$ converges uniformly on S.

Weierstrass M-test

Proof.

Given $\epsilon > 0$, choose N such that $\sum_{n=N+1}^{\infty} M_n < \epsilon$. For M > N and $x \in S$, bound

$$\left|u(x)-\sum_{k=1}^{M}u_{k}(x)\right|=\left|\sum_{k=M+1}^{\infty}u_{k}(x)\right|\leq \sum_{k=M+1}^{\infty}|u_{k}(x)|\leq \sum_{k=M+1}^{\infty}M_{k}<\epsilon.$$

This proves the uniform convergence.

- 3

くほと くほと くほと

Uniform convergence preserves continuity

Theorem

Let $x \in [a, b]$ and let $\{u_n\}_{n=1}^{\infty}$ be a sequence of functions which are continuous at x and converge uniformly on [a, b] to a limit u. Then u is continuous at x.

We checked a statement similar to this in our discussion of the Weierstrass approximation theorem, but give a proof now in any case for completeness.

Uniform convergence preserves continuity

Proof.

- Given $\epsilon > 0$, choose N such that n > N implies $||u_n u||_{\infty} < \frac{\epsilon}{3}$.
- Choose n > N, and let $\delta > 0$ be such that $y \in [a, b]$ and $|x y| < \delta$ implies $|u_n(x) u_n(y)| < \frac{\epsilon}{3}$.

• Then,

$$\begin{aligned} |u(x) - u(y)| &= |(u(x) - u_n(x)) + (u_n(x) - u_n(y)) + (u_n(y) - u(y))| \\ &\leq |u(x) - u_n(x)| + |u_n(x) - u_n(y)| + |u_n(y) - u(y)| \\ &< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon. \end{aligned}$$

- 3

C([a, b]) is complete

Theorem

Let $\{u_n\}_{n=1}^{\infty}$ be a sequence of continuous functions on [a, b] which is uniformly Cauchy. Then $\{u_n\}_{n=1}^{\infty}$ converges uniformly to a continuous function u on [a, b].

We say that the space C([a, b]) of continuous functions on [a, b] is complete under the uniform distance.

C([a, b]) is complete

Proof.

- For each x ∈ [a, b], the sequence {u_n(x)}_{n=1}[∞] is a Cauchy sequence of real numbers, and hence has a limit, call it u(x).
- Given $\epsilon > 0$ choose N > 0 such that m, n > N implies

$$|u_m(x)-u_n(x)|<\epsilon,$$

uniformly in x.

• Taking the limit as $n \to \infty$,

$$|u_m(x)-u(x)|\leq\epsilon.$$

Since this holds for all x, it implies the uniform convergence.

• The limit function *u* is continuous by the previous theorem.

3

イロト イヨト イヨト イヨト

Uniform limits and integration

Theorem

Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of integrable functions on [a, b], converging uniformly to function f. Then f is integrable, and

$$\int_a^b f(x) dx = \lim_{n \to \infty} \int_a^b f_n(x) dx.$$

Uniform limits and integration

Proof.

- Given $\epsilon > 0$, let N be such that n > N implies $||f f_n||_{\infty} < \epsilon$.
- Choose step functions s_n , t_n with $s_n < f_n < t_n$ and such that

$$\int_a^b t_n(x)dx - \epsilon < \int_a^b f_n(x)dx < \int_a^b s_n(x)dx + \epsilon.$$

- Notice that s_n − ε < f < t_n + ε, and the integrals of s_n − ε and t_n + ε differ by at most 2(1 + b − a)ε.
- Letting e ↓ 0 proves that the lower and upper integrals of f are equal, so f is integrable. We also obtain that

$$\int_a^b f(x) dx = \lim_{n \to \infty} \int_a^b f_n(x) dx.$$

3

イロト イポト イヨト イヨト

Uniform limits and differentiation

Theorem

Suppose $\{f_n\}_{n=1}^{\infty}$ is a sequence of functions, differentiable on [a, b] and such that $\{f_n(x_0)\}_{n=1}^{\infty}$ converges for some point $x_0 \in [a, b]$. If $\{f'_n\}_{n=1}^{\infty}$ converges uniformly on [a, b], then $\{f_n\}_{n=1}^{\infty}$ converges uniformly on [a, b], to a function f, and

$$f'(x) = \lim_{n \to \infty} f'_n(x).$$

Uniform limits and differentiation

Proof.

- Given $\epsilon > 0$, let N be such that m, n > N implies $\|f'_n f'_m\|_{\infty} < \frac{\epsilon}{2(b-a)}$ and $|f_n(x_0) f_m(x_0)| < \frac{\epsilon}{2}$.
- Given $x \in [a, b]$, by the Mean Value Theorem,

$$|f_n(x) - f_m(x) - (f_n(x_0) - f_m(x_0))| < \frac{|x - x_0|\epsilon}{2(b - a)} \le \frac{\epsilon}{2}.$$

• Hence, by the triangle inequality,

$$\begin{aligned} |f_n(x) - f_m(x)| &\leq |f_n(x) - f_m(x) - (f_n(x_0) - f_m(x_0))| \\ &+ |f_n(x_0) - f_m(x_0)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{aligned}$$

• It follows that $\{f_n\}_{n=1}^{\infty}$ is uniformly Cauchy, hence uniformly convergent to a function f.

Uniform limits and differentiation

Proof.

• Recall that, for m, n > N,

$$|f_n(x) - f_m(x) - (f_n(x_0) - f_m(x_0))| < \frac{|x - x_0|\epsilon}{2(b - a)} \le \frac{\epsilon}{2}.$$

• Define
$$\phi_n(t) = \begin{cases} \frac{f_n(t) - f_n(x_0)}{t - x_0} & t \neq x_0 \\ f'_n(x_0) & t = x_0 \end{cases}$$

- φ_n(t) is continuous at x₀ for each n, and the sequence converges uniformly to a function φ(t), which is thus continuous at x₀.
- For $t \neq x_0$, $\phi(t) = \frac{f(t) f(x_0)}{t x_0}$. Hence $\phi(x_0) = f'(x_0) = \lim_{n \to \infty} f'_n(x_0)$.
- Since we've check that $f_n(x)$ converges for all $x \in [a, b]$, the choice of $x_0 \in [a, b]$ is arbitrary.

3

イロト イヨト イヨト イヨト

Uniform convergence of power series

Theorem

Assume the power series $\sum_{n=0}^{\infty} a_n z^n$ converges at $z = z_1 \neq 0$. Then

- The series converges absolutely for every z with $|z| < |z_1|$.
- The series converges uniformly on every circular disc of radius R < |z₁|.

Proof.

Since $\sum a_n z_1^n$ converges, its terms tend to zero. Set $M = \max_n |a_n z_1^n|$. For $R < |z_1|$ and z such that $|z| \le R$,

$$|a_n z^n| = |a_n z_1^n| \left| \frac{z}{z_1} \right|^n \leq M \left| \frac{R}{z_1} \right|^n.$$

The uniform and absolute convergence now follows from the Weierstrass M-test with $M_n = M \left| \frac{R}{z_1} \right|^n$.

Differentiation of power series

Theorem

Let $f(x) = \sum_{n=0}^{\infty} a_n (x-a)^n$ have radius of convergence r. Then for |x-a| < r,

$$f'(x) = \sum_{n=1} na_n(x-a)^{n-1}$$

and this series has the same radius of convergence.

- 3

Differentiation of power series

Proof.

- To prove the theorem, it suffices to prove that $\sum_{n=1}^{\infty} na_n(x-a)^{n-1}$ converges absolutely on intervals $\{x : |x-a| < r_1\}$ for each $r_1 < r$, since then we can use the sequence of partial sums of $\sum_{n=0}^{\infty} a_n(x-a)^n$ in the theorem on sequences of differentiated functions.
- To check the uniform convergence, let $r_1 < r_2 < r$ and note that $|a_n|r_2^n$ is bounded, say by M.
- The Weierstrass M-test applies with $M_n = Mn \left(\frac{r_1}{r_2}\right)^n$. This series converges by the ratio test.

- Recall that the exponential function e^x satisfies the first order linear differential equation f'(x) = f(x) and f(0) = 1.
- We verify that the series E(x) satisfies this property.
 - $E(0) = \sum_{n=0}^{\infty} \frac{0^n}{n!} = 1$ (use the convention that the x^0 term is a constant)

$$E'(x) = \sum_{n=0}^{\infty} n \frac{x^{n-1}}{n!} = \sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!} = E(x).$$

 By the uniqueness theorem for first order linear ODE's this verifies that e^x = E(x) for real x.

Similarly, by the uniqueness theorem for second order linear ODE's, $\sin x$ is the unique solution of

$$f''(x) = -f(x), \qquad f(0) = 0, \ f'(0) = 1$$

and $\cos x$ is the unique solution of

$$f''(x) = -f(x), \qquad f(0) = 1, \ f'(0) = 0.$$

Define series

$$S(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, \qquad C(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}.$$

Checking the differential equations proves that $S(x) = \sin x$ and $C(x) = \cos x$.

Euler's equation

Theorem

For all $x \in \mathbb{C}$, $e^{ix} = \cos x + i \sin x$.

Proof.

Write

$$e^{ix} = \sum_{n=0}^{\infty} \frac{(ix)^n}{n!}.$$

Since the series is absolutely convergent, we can use $i^2 = -1$ and separate odd and even terms to obtain

$$e^{ix} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} + i \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

= cos x + i sin x.

Uniqueness of power series representations

Theorem

If two power series $\sum_{n=0}^{\infty} a_n (x-a)^n$ and $\sum_{n=0}^{\infty} b_n (x-a)^n$ have the same sum function f in a neighborhood of the point a then for every n, $a_n = b_n$.

Proof.

We have $a_n = b_n = f^{(n)}(a)/n!$.

D 1			
BO	hΗ		σh
00		lou	<u> – – – – – – – – – – – – – – – – – – –</u>

Integration of power series

Theorem

Let f be represented by a power series

$$f(x) = \sum_{n=0}^{\infty} a_n (x-a)^n$$

in the interval (a - r, a + r), r > 0. Then for |x - a| < r,

$$\int_a^x f(t)dt = \sum_{n=0}^\infty \frac{a_n}{n+1}(x-a)^{n+1}.$$

Proof.

This follows from the uniform convergence of the sequence of partial sums in the closed interval of radius |x - a| about a.

(日) (同) (三) (三)