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Products of series

Definition

Let Y02 g an and > .7 b, be two series. Their Cauchy product is the
series

0o
Zcm Ch = aObn+albn—1+"'+anb0~
n=0
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Example

The following example shows that it is possible that > a, and
> o2 o bn converge, but their Cauchy product > ° ¢, does not converge.

o Leta,=b,= E/l The series > ° \/7) converges by the
alternating series test.
— n 1
@ The CaUChy prOdUCt has Ch = (_]‘)nZk:O m
@ By the Inequality of the Arithmetic Mean-Geometric Mean,

2
ViD= k1) < =,
and hence |cp| > >0, niz 2(::21)_

@ Since |cy| — 1 as n — oo, the series does not converge.
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Products of series

Theorem

Let >"0° ,an = A converge absolutely, and Y 7" o b, = B converge.
Denote by {cn}22, the Cauchy product of {an}52, and {b,}7>,. Then

i c, = AB.
n=0
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Products of series

Proof of Cauchy Product formula. See Rudin, pp. 74-75.

o Define partial sums A, = >~} o ak, Bo = p_o bk, Co =D 4_o k-
Set 8, = B, — B.
o Write

Cn = aobo + (aob1 + a1bo) + - - - + (aobn + a1bp—1 + -+ - + anbo)
=aoB,+ a1Bp—1+ -+ anBo
= ag(B + Bn) + a1(B + Bp-1) + - - - an(B + bo)
= ApB + aofn + a18n-1+ -+ + anfo-

o Define v, = agfBn + a18n—1 + - + anfo.
@ Since A,B — AB as n — oo, it suffices to check that v, — 0.
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Products of series

Proof of Cauchy Product formula. See Rudin, pp. 74-75.

@ Recall that 8, = B, — B tends to 0 with n, and that we wish to show
that v, = 298, + a18n—1 + - - - + anfo tends to 0, also.

o Define v =77 |anl.

e Given € > 0, choose N such that n > N implies |3,| < €.

@ Bound

n

N N
Yol <D lan—iBil + D> lan—iBil < lan—iBl + e

k=0 k=N+1 k=0

@ Since a, — 0 as n — oo, if n is sufficiently large, then
221:0 lan—kBk| < €, whence |v,| < (1 + a)e. Letting € | 0 completes
the proof.

O]

v
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Example

The exponential function is often defined as the power series

which converges absolutely in the whole complex plane by the ratio test.
We check that this series satisfies the expected multiplicative property.

oo n Zkank
E(Z)E(W):Z Ki(n— k)!

n=0 k=0 '
o0 n

_ 1 N\ _k n—k

SO HE
n=0 k=0

B i (z+w)"

o |
=0 n!

= E(z+w)
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Example with order of limits

Consider the following:

. . m .
lim [im = |lim 0=0
m—oco \ n—oco m-+ n m—00

. . m .
lim lim = lim1=1.
n—oo \m—oo m-+ n n—oo

Thus, the order in which limits are taken matters.
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Pointwise convergence

Recall the definition of pointwise convergence.

Definition

A sequence of functions {f,}°°; converges pointwise on a set E if, for

each x € E, lim,_, f5(x) exists. The function f defined on E by
f(x) = lim fp(x)

n—oo

is called the limit function. )
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Uniform convergence

Recall that we have defined the supremum of a set which is bounded
above to be the least upper bound. If a set is not bounded above, define
its supremum to be oco.

Definition
A sequence of functions {f,}°°; converges uniformly on a set E if there
exists a function f on E such that, for each € > 0 there exists N > 0 such
that, for n > N,

sup |[f(x) — f(x)| < e

xeE

The sequence is said to be uniformly Cauchy on E if, for each € > 0 there
exists N > 0 such that m,n > N implies

sup |fm(x) — fa(x)| < €.
x€eE
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Example

Let fo(x) = (1+ 2),, and set

0o 00 2
f(x) = Zofn(x) = ;m

Note that £,(0) = 0 for all n, so f(0) = 0. For x # 0, summing the
geometric series gives

x2

f(x):—1:1+x2.

1- 1+x2

Thus the sum converges pointwise to a discontinuous function.
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Example

Define for m=1,2, ...,

fm(x) = n||_>n;|o cos(mlmx)?",

This function is 1 if and only if m!x is an integer. The function
lim fm(x)

m—0o0

is 1 at rational x and 0 at irrational x, hence is not Riemann integrable.
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Example

o Let fh(x) = % This sequence of functions converges uniformly to
0.

e f!(x) = +/ncosnx. The sequence of derivatives does not converge
even pointwise, for instance, at 0.

@ This example shows that a condition stronger than uniform
convergence is required to guarantee the convergence of derivatives.
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Example

Let f,(x) = nx(1 — x2)". For each x € [0, 1], lim,_o0 fa(x) = 0. Thus

1 1
/ lim f(x)dx = / 0dx = 0.
0 n—00 0

On the other hand,

1 1
. T _J2\n — n _1
i, [ e = fim o [0 e = fim 5 =
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Welerstrass M-test

Theorem (The Weierstrass M-test)

Let >, u, be a series of functions which converges pointwise to a
function u on a set S. Suppose that there are positive constants {M,}> ;

such that )" 1 M, < oo and such that
0 < |up(x)| < M,

for all x € S. Then Y7 ; un(x) converges uniformly on S.
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Welerstrass M-test

Proof.

Given € > 0, choose N such that 3% ., M, <e. For M > N and x € S,
bound

M () 00 0o
u() =D )| = Y wm)[ < D juw)l< D Mc<e
k=1 k=M+1 k=M-+1 k=M+1
This proves the uniform convergence. Ol

v
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Uniform convergence preserves continuity

Theorem

Let x € [a, b] and let {un}5°, be a sequence of functions which are
continuous at x and converge uniformly on [a, b] to a limit u. Then u is
continuous at x.

We checked a statement similar to this in our discussion of the Weierstrass
approximation theorem, but give a proof now in any case for completeness.
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Uniform convergence preserves continuity

Proof.
e Given € > 0, choose N such that n > N implies ||u, — uf|oc < §.
@ Choose n > N, and let 6 > 0 be such that y € [a, b] and |x — y| < ¢
implies |up(x) — ua(y)| < 5.
@ Then,

|u(x) = u()l = [(u(x) = un(x)) + (un(x) = un(y)) + (un(y) — u(y))]
< Ju(x) = un(X)] =+ [un(x) = un(y)] + [un(y) — u(y)

<€+€+€_
37373 ¢
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C([a, b]) is complete

Theorem

Let {un}52; be a sequence of continuous functions on [a, b] which is
uniformly Cauchy. Then {un}5°, converges uniformly to a continuous
function u on [a, b].

We say that the space C([a, b]) of continuous functions on [a, b] is
complete under the uniform distance.
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C([a, b]) is complete

Proof.

@ For each x € [a, b], the sequence {un(x)}5°, is a Cauchy sequence of
real numbers, and hence has a limit, call it u(x).

@ Given € > 0 choose N > 0 such that m, n > N implies
lum(x) — un(x)] <,

uniformly in x.

e Taking the limit as n — oo,
lum(x) — u(x)] <e.

Since this holds for all x, it implies the uniform convergence.

@ The limit function u is continuous by the previous theorem.
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Uniform limits and integration

Theorem

Let {f,}7°; be a sequence of integrable functions on [a, b], converging
uniformly to function f. Then f is integrable, and

/ab f(x)dx = lim /ab o (x) dx.
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Uniform limits and integration

Proof.
@ Given € > 0, let N be such that n > N implies ||f — f,|lo0 < €.

@ Choose step functions s,, t, with s, < f, < t, and such that

/ab ta(x)dx — e < /ab fa(x)dx < /absn(X)dx T

o Notice that s, — e < f < t, + €, and the integrals of s, — € and t, + ¢
differ by at most 2(1 + b — a)e.

@ Letting € | O proves that the lower and upper integrals of f are equal,
so f is integrable. We also obtain that

/a () = lim. / £ ()dx.

O]

v
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Uniform limits and differentiation

Theorem

Suppose {f,}°°  is a sequence of functions, differentiable on [a, b] and
such that {f,(x0)}52, converges for some point xy € [a, b]. If {f]}°°,
converges uniformly on [a, b, then {f,}°°, converges uniformly on [a, b],
to a function f, and

f'(x) = lim fI(x).

n—o00
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Uniform limits and differentiation
Proof.

@ Given ¢ > 0, let N be such that m,n > N implies
€

= fhlleo < 363y and |fa(x0) — fm(x0)| < 5.
e Given x € [a, b], by the Mean Value Theorem,

1£(x) = Fin(x) = (Fa(0) = Fin(30))] < % <

@ Hence, by the triangle inequality,

|fa(x) = Tmn(X)| < |fa(x) = fin(x) = (fa(x0) = m(x0))|

€ €
+falx0) = fm(x0) < 5 + 5

o It follows that {f,}>°; is uniformly Cauchy, hence uniformly
convergent to a function f.

= €.

O]
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Uniform limits and differentiation

Proof.
@ Recall that, for m,n > N,

1a(X) — () — (Fa(30) — Fin(x0))] < % <t

fn(t)=fn(x0) t ?é X0

o Define ¢n(t) = { =

f,;(Xo) t = Xp .
@ ¢,(t) is continuous at xg for each n, and the sequence converges
uniformly to a function ¢(t), which is thus continuous at xg.

e For t # xp, ¢(t) = %}igm) Hence ¢(x0) = '(x0) = limp—y00 f,1(X0)-
@ Since we've check that f,(x) converges for all x € [a, b], the choice of

xo € [a, b] is arbitrary.
0J

v
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Uniform convergence of power series

Theorem
Assume the power series > anz" converges at z = z; # 0. Then
© The series converges absolutely for every z with |z| < |z].

@ The series converges uniformly on every circular disc of radius
R < ‘le.

Proof.

Since > anz{ converges, its terms tend to zero. Set M = max, |apz{|. For
R < |z1| and z such that |z| < R,

n

<M

n

R

n| __ n
|anz"| = |anz]| Z

z
21

The uniform and absolute convergence now follows from the Weierstrass

M-test with M, = M |E|" 0

v
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Differentiation of power series

Theorem

Let f(x) = >"72 an(x — a)" have radius of convergence r. Then for
|x —a|l <r,

f'(x) = Z nap(x — a)™ !
n=1

and this series has the same radius of convergence.
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Differentiation of power series

Proof.

@ To prove the theorem, it suffices to prove that > | na,(x — a)
converges absolutely on intervals {x : |[x —a| < i} for each n <r,
since then we can use the sequence of partial sums of
> 02 g an(x — a)" in the theorem on sequences of differentiated
functions.

n—1

@ To check the uniform convergence, let r; < r» < r and note that
|an|ry is bounded, say by M.

n
@ The Weierstrass M-test applies with M, = Mn (%) . This series
converges by the ratio test.
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Example

@ Recall that the exponential function e* satisfies the first order linear
differential equation f’(x) = f(x) and f(0) = 1.
@ We verify that the series E(x) satisfies this property.
» E(0) =327, % =1 (use the convention that the x° term is a

n=0 n!
constant)
>
, > Xn—l > Xn—l

@ By the uniqueness theorem for first order linear ODE's this verifies
that ¥ = E(x) for real x.
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Example

Similarly, by the uniqueness theorem for second order linear ODE’s, sin x is
the unique solution of

f'(x) = —f(x), f(0) =0, f(0)=1
and cos x is the unique solution of
f"(x) = —f(x), f(0)=1, f'(0)=0.

Define series

00 x2n+1 - x2n
S(x) = nz:%(—l)"(znwa C(x) = ;(—1)"(2,7)!-

Checking the differential equations proves that S(x) = sinx and
C(x) = cos x.
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Euler's equation

Theorem

For all x € C, e* = cos x + isin x.

Proof.
Write
o
n=0
Since the series is absolutely convergent, we can use i> = —1 and separate
odd and even terms to obtain
e9 2n ce 2n+1
= 2 (W + 12V gy
2 S en+ 1
= Ccos X + isin x.
O
v
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Uniqueness of power series representations

Theorem

If two power series y > o an(x — a)" and Y07, ba(x — a)" have the same
sum function f in a neighborhood of the point a then for every n, a, = b,,.

Proof.
We have a, = b, = f(")(a)/n!. O
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Integration of power series

Theorem
Let f be represented by a power series

f(x) = an(x—a)"
n=0

in the interval (a—r,a+r), r > 0. Then for |x — a| <r,

/ax F(t)dt=>_ %(X — &),

n=0 )
Proof.
This follows from the uniform convergence of the sequence of partial sums
in the closed interval of radius |x — a| about a. O

v
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