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Products of series

Definition

Let
∑∞

n=0 an and
∑∞

n=0 bn be two series. Their Cauchy product is the
series

∞∑
n=0

cn, cn = a0bn + a1bn−1 + · · ·+ anb0.
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Example

The following example shows that it is possible that
∑∞

n=0 an and∑∞
n=0 bn converge, but their Cauchy product

∑∞
n=0 cn does not converge.

Let an = bn = (−1)n√
n+1

. The series
∑∞

n=0
(−1)n√
n+1

converges by the

alternating series test.

The Cauchy product has cn = (−1)n
∑n

k=0
1√

k+1
√
n−k+1

.

By the Inequality of the Arithmetic Mean-Geometric Mean,√
(k + 1)(n − k + 1) ≤ n + 2

2
,

and hence |cn| ≥
∑n

k=0
2

n+2 = 2(n+1)
n+2 .

Since |cn| → 1 as n→∞, the series does not converge.
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Products of series

Theorem

Let
∑∞

n=0 an = A converge absolutely, and
∑∞

n=0 bn = B converge.
Denote by {cn}∞n=0 the Cauchy product of {an}∞n=0 and {bn}∞n=0. Then

∞∑
n=0

cn = AB.
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Products of series

Proof of Cauchy Product formula. See Rudin, pp. 74-75.

Define partial sums An =
∑n

k=0 ak , Bn =
∑n

k=0 bk , Cn =
∑n

k=0 ck .
Set βn = Bn − B.

Write

Cn = a0b0 + (a0b1 + a1b0) + · · ·+ (a0bn + a1bn−1 + · · ·+ anb0)

= a0Bn + a1Bn−1 + · · ·+ anB0

= a0(B + βn) + a1(B + βn−1) + · · · an(B + β0)

= AnB + a0βn + a1βn−1 + · · ·+ anβ0.

Define γn = a0βn + a1βn−1 + · · ·+ anβ0.

Since AnB → AB as n→∞, it suffices to check that γn → 0.
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Products of series

Proof of Cauchy Product formula. See Rudin, pp. 74-75.

Recall that βn = Bn − B tends to 0 with n, and that we wish to show
that γn = a0βn + a1βn−1 + · · ·+ anβ0 tends to 0, also.

Define α =
∑∞

n=0 |an|.
Given ε > 0, choose N such that n > N implies |βn| < ε.

Bound

|γn| ≤
N∑

k=0

|an−kβk |+
n∑

k=N+1

|an−kβk | ≤
N∑

k=0

|an−kβk |+ εα.

Since an → 0 as n→∞, if n is sufficiently large, then∑N
k=0 |an−kβk | < ε, whence |γn| ≤ (1 + α)ε. Letting ε ↓ 0 completes

the proof.
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Example
The exponential function is often defined as the power series

E (z) =
∞∑
n=0

zn

n!

which converges absolutely in the whole complex plane by the ratio test.
We check that this series satisfies the expected multiplicative property.

E (z)E (w) =
∞∑
n=0

n∑
k=0

zkwn−k

k!(n − k)!

=
∞∑
n=0

1

n!

n∑
k=0

(
n

k

)
zkwn−k

=
∞∑
n=0

(z + w)n

n!

= E (z + w).
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Example with order of limits

Consider the following:

lim
m→∞

(
lim
n→∞

m

m + n

)
= lim

m→∞
0 = 0

lim
n→∞

(
lim

m→∞

m

m + n

)
= lim

n→∞
1 = 1.

Thus, the order in which limits are taken matters.
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Pointwise convergence

Recall the definition of pointwise convergence.

Definition

A sequence of functions {fn}∞n=1 converges pointwise on a set E if, for
each x ∈ E , limn→∞ fn(x) exists. The function f defined on E by

f (x) = lim
n→∞

fn(x)

is called the limit function.
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Uniform convergence

Recall that we have defined the supremum of a set which is bounded
above to be the least upper bound. If a set is not bounded above, define
its supremum to be ∞.

Definition

A sequence of functions {fn}∞n=1 converges uniformly on a set E if there
exists a function f on E such that, for each ε > 0 there exists N > 0 such
that, for n > N,

sup
x∈E
|f (x)− fn(x)| < ε.

The sequence is said to be uniformly Cauchy on E if, for each ε > 0 there
exists N > 0 such that m, n > N implies

sup
x∈E
|fm(x)− fn(x)| < ε.
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Example

Let fn(x) = x2

(1+x2)n
and set

f (x) =
∞∑
n=0

fn(x) =
∞∑
n=0

x2

(1 + x2)n
.

Note that fn(0) = 0 for all n, so f (0) = 0. For x 6= 0, summing the
geometric series gives

f (x) =
x2

1− 1
1+x2

= 1 + x2.

Thus the sum converges pointwise to a discontinuous function.
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Example

Define for m = 1, 2, ...,

fm(x) = lim
n→∞

cos(m!πx)2n.

This function is 1 if and only if m!x is an integer. The function

lim
m→∞

fm(x)

is 1 at rational x and 0 at irrational x , hence is not Riemann integrable.
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Example

Let fn(x) = sin nx√
n

. This sequence of functions converges uniformly to
0.

f ′n(x) =
√

n cos nx . The sequence of derivatives does not converge
even pointwise, for instance, at 0.

This example shows that a condition stronger than uniform
convergence is required to guarantee the convergence of derivatives.
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Example

Let fn(x) = nx(1− x2)n. For each x ∈ [0, 1], limn→∞ fn(x) = 0. Thus∫ 1

0
lim
n→∞

fn(x)dx =

∫ 1

0
0dx = 0.

On the other hand,

lim
n→∞

∫ 1

0
fn(x)dx = lim

n→∞
n

∫ 1

0
x(1− x2)ndx = lim

n→∞

n

2n + 2
=

1

2
.
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Weierstrass M-test

Theorem (The Weierstrass M-test)

Let
∑∞

n=1 un be a series of functions which converges pointwise to a
function u on a set S. Suppose that there are positive constants {Mn}∞n=1

such that
∑∞

n=1 Mn <∞ and such that

0 ≤ |un(x)| ≤ Mn

for all x ∈ S. Then
∑∞

n=1 un(x) converges uniformly on S.
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Weierstrass M-test

Proof.

Given ε > 0, choose N such that
∑∞

n=N+1 Mn < ε. For M > N and x ∈ S ,
bound∣∣∣∣∣u(x)−

M∑
k=1

uk(x)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=M+1

uk(x)

∣∣∣∣∣ ≤
∞∑

k=M+1

|uk(x)| ≤
∞∑

k=M+1

Mk < ε.

This proves the uniform convergence.
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Uniform convergence preserves continuity

Theorem

Let x ∈ [a, b] and let {un}∞n=1 be a sequence of functions which are
continuous at x and converge uniformly on [a, b] to a limit u. Then u is
continuous at x.

We checked a statement similar to this in our discussion of the Weierstrass
approximation theorem, but give a proof now in any case for completeness.
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Uniform convergence preserves continuity

Proof.

Given ε > 0, choose N such that n > N implies ‖un − u‖∞ < ε
3 .

Choose n > N, and let δ > 0 be such that y ∈ [a, b] and |x − y | < δ
implies |un(x)− un(y)| < ε

3 .

Then,

|u(x)− u(y)| = |(u(x)− un(x)) + (un(x)− un(y)) + (un(y)− u(y))|
≤ |u(x)− un(x)|+ |un(x)− un(y)|+ |un(y)− u(y)|

<
ε

3
+
ε

3
+
ε

3
= ε.
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C ([a, b]) is complete

Theorem

Let {un}∞n=1 be a sequence of continuous functions on [a, b] which is
uniformly Cauchy. Then {un}∞n=1 converges uniformly to a continuous
function u on [a, b].

We say that the space C ([a, b]) of continuous functions on [a, b] is
complete under the uniform distance.
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C ([a, b]) is complete

Proof.

For each x ∈ [a, b], the sequence {un(x)}∞n=1 is a Cauchy sequence of
real numbers, and hence has a limit, call it u(x).

Given ε > 0 choose N > 0 such that m, n > N implies

|um(x)− un(x)| < ε,

uniformly in x .

Taking the limit as n→∞,

|um(x)− u(x)| ≤ ε.

Since this holds for all x , it implies the uniform convergence.

The limit function u is continuous by the previous theorem.
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Uniform limits and integration

Theorem

Let {fn}∞n=1 be a sequence of integrable functions on [a, b], converging
uniformly to function f . Then f is integrable, and∫ b

a
f (x)dx = lim

n→∞

∫ b

a
fn(x)dx .
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Uniform limits and integration

Proof.

Given ε > 0, let N be such that n > N implies ‖f − fn‖∞ < ε.

Choose step functions sn, tn with sn < fn < tn and such that∫ b

a
tn(x)dx − ε <

∫ b

a
fn(x)dx <

∫ b

a
sn(x)dx + ε.

Notice that sn − ε < f < tn + ε, and the integrals of sn − ε and tn + ε
differ by at most 2(1 + b − a)ε.

Letting ε ↓ 0 proves that the lower and upper integrals of f are equal,
so f is integrable. We also obtain that∫ b

a
f (x)dx = lim

n→∞

∫ b

a
fn(x)dx .
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Uniform limits and differentiation

Theorem

Suppose {fn}∞n=1 is a sequence of functions, differentiable on [a, b] and
such that {fn(x0)}∞n=1 converges for some point x0 ∈ [a, b]. If {f ′n}∞n=1

converges uniformly on [a, b], then {fn}∞n=1 converges uniformly on [a, b],
to a function f , and

f ′(x) = lim
n→∞

f ′n(x).
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Uniform limits and differentiation

Proof.

Given ε > 0, let N be such that m, n > N implies
‖f ′n − f ′m‖∞ < ε

2(b−a) and |fn(x0)− fm(x0)| < ε
2 .

Given x ∈ [a, b], by the Mean Value Theorem,

|fn(x)− fm(x)− (fn(x0)− fm(x0))| < |x − x0|ε
2(b − a)

≤ ε

2
.

Hence, by the triangle inequality,

|fn(x)− fm(x)| ≤ |fn(x)− fm(x)− (fn(x0)− fm(x0))|

+ |fn(x0)− fm(x0)| < ε

2
+
ε

2
= ε.

It follows that {fn}∞n=1 is uniformly Cauchy, hence uniformly
convergent to a function f .
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Uniform limits and differentiation

Proof.

Recall that, for m, n > N,

|fn(x)− fm(x)− (fn(x0)− fm(x0))| < |x − x0|ε
2(b − a)

≤ ε

2
.

Define φn(t) =

{
fn(t)−fn(x0)

t−x0 t 6= x0
f ′n(x0) t = x0

.

φn(t) is continuous at x0 for each n, and the sequence converges
uniformly to a function φ(t), which is thus continuous at x0.

For t 6= x0, φ(t) = f (t)−f (x0)
t−x0 . Hence φ(x0) = f ′(x0) = limn→∞ f ′n(x0).

Since we’ve check that fn(x) converges for all x ∈ [a, b], the choice of
x0 ∈ [a, b] is arbitrary.
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Uniform convergence of power series

Theorem

Assume the power series
∑∞

n=0 anzn converges at z = z1 6= 0. Then

1 The series converges absolutely for every z with |z | < |z1|.
2 The series converges uniformly on every circular disc of radius

R < |z1|.

Proof.

Since
∑

anzn
1 converges, its terms tend to zero. Set M = maxn |anzn

1 |. For
R < |z1| and z such that |z | ≤ R,

|anzn| = |anzn
1 |
∣∣∣∣ z

z1

∣∣∣∣n ≤ M

∣∣∣∣R

z1

∣∣∣∣n .
The uniform and absolute convergence now follows from the Weierstrass

M-test with Mn = M
∣∣∣ Rz1 ∣∣∣n.
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Differentiation of power series

Theorem

Let f (x) =
∑∞

n=0 an(x − a)n have radius of convergence r . Then for
|x − a| < r ,

f ′(x) =
∞∑
n=1

nan(x − a)n−1

and this series has the same radius of convergence.

Bob Hough Math 141: Lecture 20 November 21, 2016 27 / 45



Differentiation of power series

Proof.

To prove the theorem, it suffices to prove that
∑∞

n=1 nan(x − a)n−1

converges absolutely on intervals {x : |x − a| < r1} for each r1 < r ,
since then we can use the sequence of partial sums of∑∞

n=0 an(x − a)n in the theorem on sequences of differentiated
functions.

To check the uniform convergence, let r1 < r2 < r and note that
|an|rn2 is bounded, say by M.

The Weierstrass M-test applies with Mn = Mn
(
r1
r2

)n
. This series

converges by the ratio test.
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Example

Recall that the exponential function ex satisfies the first order linear
differential equation f ′(x) = f (x) and f (0) = 1.

We verify that the series E (x) satisfies this property.
I E (0) =

∑∞
n=0

0n

n! = 1 (use the convention that the x0 term is a
constant)

I

E ′(x) =
∞∑
n=0

n
xn−1

n!
=
∞∑
n=1

xn−1

(n − 1)!
= E (x).

By the uniqueness theorem for first order linear ODE’s this verifies
that ex = E (x) for real x .
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Example

Similarly, by the uniqueness theorem for second order linear ODE’s, sin x is
the unique solution of

f ′′(x) = −f (x), f (0) = 0, f ′(0) = 1

and cos x is the unique solution of

f ′′(x) = −f (x), f (0) = 1, f ′(0) = 0.

Define series

S(x) =
∞∑
n=0

(−1)n
x2n+1

(2n + 1)!
, C (x) =

∞∑
n=0

(−1)n
x2n

(2n)!
.

Checking the differential equations proves that S(x) = sin x and
C (x) = cos x .
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Euler’s equation

Theorem

For all x ∈ C, e ix = cos x + i sin x.

Proof.

Write

e ix =
∞∑
n=0

(ix)n

n!
.

Since the series is absolutely convergent, we can use i2 = −1 and separate
odd and even terms to obtain

e ix =
∞∑
n=0

(−1)n
x2n

(2n)!
+ i

∞∑
n=0

(−1)n
x2n+1

(2n + 1)!

= cos x + i sin x .
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Uniqueness of power series representations

Theorem

If two power series
∑∞

n=0 an(x − a)n and
∑∞

n=0 bn(x − a)n have the same
sum function f in a neighborhood of the point a then for every n, an = bn.

Proof.

We have an = bn = f (n)(a)/n!.
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Integration of power series

Theorem

Let f be represented by a power series

f (x) =
∞∑
n=0

an(x − a)n

in the interval (a− r , a + r), r > 0. Then for |x − a| < r ,∫ x

a
f (t)dt =

∞∑
n=0

an
n + 1

(x − a)n+1.

Proof.

This follows from the uniform convergence of the sequence of partial sums
in the closed interval of radius |x − a| about a.
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