Math 141: Lecture 2

Integers, rationals, reals

Bob Hough

August 31, 2016

Bob Hough

Math 141: Lecture 2

August 31, 2016 1 / 38

A 🖓 h

3

Definition of $\ensuremath{\mathbb{Z}}$

To form the integers $\mathbb Z$ from the natural numbers $\mathbb N$ the symbol - is introduced. Let

$$-\mathbb{N} = \{-x : x \in \mathbb{N}\}.$$

As a set

$$\mathbb{Z} = (\mathbb{N} \cup -\mathbb{N})/\sim$$

where \sim is an equivalence relation identifying 0 with -0. Formally,

$$x \sim y \Leftrightarrow \begin{cases} x = y & \text{if } x, y \in \mathbb{N} \text{ or } x, y \in -\mathbb{N} \\ x = 0, y = -0 & \text{if } x \in \mathbb{N}, y \in -\mathbb{N} \end{cases}$$

3

(日) (同) (三) (三)

٠

Operations on $\ensuremath{\mathbb{Z}}$

The usual conventions extending operations from \mathbb{N} to \mathbb{Z} apply. For instance, we declare, for $n \in \mathbb{Z}$,

$$-(-n)=n.$$

Multiplication is extended by

$$(-m) \times n = m \times (-n) = -(m \times n), \qquad (-m) \times (-n) = m \times n.$$

When m = np and $n \neq 0$, integer division is defined by

$$\frac{-m}{n} = \frac{m}{-n} = -p, \qquad \frac{-m}{-n} = p.$$

Operations on $\ensuremath{\mathbb{Z}}$

To extend addition from \mathbb{N} to \mathbb{Z} , recall the trichotomy principle of \mathbb{N} :

Theorem (Trichotomy principle of \mathbb{N})

Let $m, n \in \mathbb{N}$. Exactly one of m < n, m = n, m > n is true. If m < n then $m + 1 \le n$.

Given $m, n \in \mathbb{N}$, define

$$-m+n = n+-m = \begin{cases} x \text{ s.t. } x+m = n & \text{if } m < n \\ 0 & \text{if } m = n \\ -x \text{ s.t. } x+n = m & \text{if } m > n \end{cases}$$

Also, -m + (-n) = -(m + n). Subtraction is defined on \mathbb{Z} by m - n = m + (-n). Define $m \le n$ by $n - m \in \mathbb{N}$.

The properties of a commutative ring

Definition

A (commutative) ring is a set R together with two operations $+, \times : R^2 \to R$ which satisfy the following properties:

• +, × are associative:
$$a + (b + c) = (a + b) + c$$
,
 $(a \times b) \times c = a \times (b \times c)$

- Solution Add. and mult. identity: There exist elements 0 ≠ 1 ∈ R such that, $\forall a \in R, 0 + a = 1 × a = a.$
- Additive inverse: For each a ∈ R there exists -a ∈ R such that a + (-a) = 0.
- × distributes over +: $a \times (b + c) = a \times b + a \times c$.

Only additive inverses are missing from \mathbb{N} .

・ 同 ト ・ ヨ ト ・ ヨ ト

Deducing properties of ${\mathbb Z}$ from those of ${\mathbb N}$

Checking the ring properties of $\mathbb Z$ from those of $\mathbb N$ when addition is involved is a tedious case-by-case check. We verify the distributive property.

The distributive property

Proof that \times distributes over + in \mathbb{Z} .

•
$$(-a) \times (b+c) = -(a \times (b+c))$$
 and
 $(-a) \times b + (-a) \times c = -(a \times b + a \times c)$, so suppose $a \in \mathbb{N}$

- Similarly, replacing both b with -b and c with -c flips the sign of both sides of the equation, so assume $b \in \mathbb{N}$.
- If $c \in \mathbb{N}$, apply the distributive property in \mathbb{N} , so assume $c \in -\mathbb{N}$

Write c = -c' with $c' \in \mathbb{N}$. If b < c' write b + x = c'. Then $a \times b + a \times x = a \times c'$ follows from the distributive property of \mathbb{N} , so

$$a \times (b + c) = a \times (-x) = -a \times x = a \times b + a \times c.$$

The case b > c' is similar. If b = c', reduce to the identity

$$a imes 0 = 0,$$

which may be checked by induction.

Examples of rings

The ring $\mathbb{Z}[x]$ of integer polynomials in a single variable x. These are expressions of the form

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0 = \sum_{i=0}^n a_i x^i, \qquad n \in \mathbb{N},$$

-

where the coefficients $a_n, ..., a_0$ are integers. The rules for adding and multiplying polynomials are familiar from high-school algebra.

Examples of rings

The ring $\mathbb{Z}[\epsilon]/\epsilon^2$ of integers with an infinitesimal. This set is given by

$$\mathbb{Z}[\epsilon]/\epsilon^2 = \{a + b\epsilon : a, b \in \mathbb{Z}\}.$$

Addition and multiplication of these expressions is the same as for the ring $\mathbb{Z}[\epsilon]$ of polynomials in ϵ , except all terms involving $\epsilon^2, \epsilon^3, ...$ are set to 0. More formally, $\mathbb{Z}[\epsilon]/\epsilon^2$ may be expressed as the set \mathbb{Z}^2 with rules

$$(a,b)+(a',b')=(a+a',b+b'),$$
 $(a,b)\times(a',b')=(a\times a',a\times b'+a'\times b).$

We think of this ring as performing computation with one degree of accuracy.

The ring $\mathbb{Z}[\epsilon]/\epsilon^n$ of integers with a degree *n* infinitesimal. This behaves like $\mathbb{Z}[\epsilon]/\epsilon^2$, except terms in ϵ^j are kept for j < n.

We won't check that the any of the above objects are rings, although I encourage you to convince yourself of this fact (you are not responsible for it on homeworks or exams).

The division algorithm

Theorem (The division algorithm)

For each $x \in \mathbb{Z}$ and $n \in \mathbb{N} \setminus \{0\}$ there exists a unique $q \in \mathbb{Z}$ and $r \in \mathbb{N}$, $0 \le r < n$ such that $x = q \times n + r$.

q is called the quotient and r the residue. Warning: on many computer implementations of integers, $\frac{x}{n}$ gives the value q, ignoring r.

Proof.

See HW1 #5. (Note: as we didn't introduce \mathbb{Z} until this lecture, full marks for solutions that treat only $x \in \mathbb{N}$.)

・ 同 ト ・ ヨ ト ・ ヨ ト

Modular arithmetic

Let $n \in \mathbb{N}$, n > 1, and define an equivalence relation on \mathbb{Z} by $a \sim b$ if and only if n|(b-a). This is equivalent to a = qn+r, b = q'n+r for the same residue r, $0 \le r < n$ in the division algorithm. The set \mathbb{Z}/\sim is denoted

$$\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, ..., \overline{n-1}\}.$$

(The bars are usually omitted).

Modular arithmetic

 $\mathbb{Z}/n\mathbb{Z}$ is given a ring structure by defining

$$\overline{a} + \overline{b} = \overline{a+b}, \qquad \overline{a} \times \overline{b} = \overline{a \times b}.$$

These are well-defined, since if $a_0 \in \overline{a}$, $b_0 \in \overline{b}$, then $a_0 = a + xn$, $b_0 = b + yn$ for some $x, y \in \mathbb{Z}$, whence

 $a_0 + b_0 = a + b + (x + y)n,$ $a_0b_0 = ab + (ay + bx + xyn)n$

differ from a + b, ab by a multiple of n. The additive identity is $\overline{0}$, mult. ident. is $\overline{1}$, and add. inverse of \overline{x} is $\overline{-x}$.

Euclidean algorithm

Let $m, n \in \mathbb{N}$. The greatest common divisor of m, n, denoted GCD(m, n) is the largest $d \in \mathbb{N}$ such that d|m and d|n.

Theorem (Euclidean algorithm) Let $m > n \in \mathbb{N}$. Euclid's algorithm Initialize (a, b) = (m, n). While $b \neq 0$: • Apply the division algorithm to write a = bq + r• Replace (a, b) with (b, r) (so a := b, b := r) • Repeat

produces the pair (GCD(m, n), 0). Moreover, the algorithm can be used to find $x, y \in \mathbb{Z}$ such xm + yn = GCD(m, n).

(日) (周) (三) (三)

Euclidean algorithm

Proof.

- For all $x \in \mathbb{Z}$ and $d \in \mathbb{N}$, if d|m and d|n then d|m + nx. Hence GCD(m, n) = GCD(n, m + nx).
- Write m = nq + r and choose x = -q to obtain GCD(m, n) = GCD(n, r).
- Let $S = \{a + b : (a, b) \text{ is produced by the algorithm}\}$. By the well-ordering principle, S has a least member $a_0 + b_0$ produced by (a_0, b_0) .
- When writing a = qb + r, r < b, so the sum a + b decreases at each step of the algorithm. Hence a₀ = GCD(m, n), b₀ = 0.
- One checks by induction that if (a, b) is produced by the algorithm, then there exist x, y, z, w ∈ Z such that a = xm + yn, b = zm + wn.

(日) (同) (三) (三)

Primes

A natural number p > 1 is *prime* if the only natural numbers which divide p are 1 and p.

Theorem

Let $a, b \in \mathbb{N}$ and let p be a prime. If p|ab then p|a or p|b (or both).

Proof.

Suppose *p* does not divide *a*. Then GCD(a, p) = 1. Apply the Euclidean algorithm to find integer *x*, *y* such that xa + yp = 1. Multiply both sides by *b*. Thus xab + ybp = b. If p|ab then *p* divides the left hand side, hence p|b.

- 4 週 ト - 4 三 ト - 4 三 ト

Prime factorization

Theorem

Every $n \in \mathbb{N}$, n > 1 is divisible by a prime.

For a proof, see HW2. In solving this problem it will be helpful to use a variant of induction called 'strong induction'. Suppose that one wishes to prove a statement p(n) for all integers n. In strong induction, one upgrades p(n) to the statement

$$P(n) = \forall m \leq n, p(n).$$

Evidently p(n) is true for all n if and only if P(n) is true for all n, but in making the inductive step, the inductive assumption in P(n) contains more information.

Prime factorization

Theorem (Prime factorization)

Let $n \ge 2$ be a natural number. Then n has a unique representation as $n = \prod_{i=1}^{m} p_i^{e_i}$ where $p_1, ..., p_m$ are prime, $p_i < p_j$ if i < j and each $e_i \in \mathbb{N} \setminus \{0\}$.

Proof of existence.

Let P(n) be the statement every $1 < k \le n$ has a representation of the given type.

- Base case: n = 0, 1. True because nothing needs to be proved.
- Inductive step: Assume P(n) for some $n \ge 1$. If n + 1 is prime, then n + 1 itself is a representation of this type. Otherwise n + 1 = pk where p is prime and 1 < k < n + 1. It follows that k has a representation of the given type, and multiplying by p, n + 1 does also.

イロト イポト イヨト イヨト

Prime factorization

Proof of uniqueness.

To prove the uniqueness, let S denote the set of $n \ge 2$ that have two distinct representations of the given type. If S is non-empty, then it has a least element n > 1,

$$n=\prod_{i=1}^m p_i^{e_i}=\prod_{j=1}^k q_j^{f_j}.$$

Since $p_1|n, p_1$ divides one of $q_1, ..., q_k$ (this requires a proof by induction, which has been omitted), hence is equal to one of $q_1, ..., q_k$. Cancelling this factor of p_1 from both sides obtains a smaller example $\frac{n}{p_1} \in S$, a contradiction.

Definition of $\ensuremath{\mathbb{Q}}$

As a set,

$$\mathbb{Q}=\mathbb{Z}\times (\mathbb{N}\setminus \{0\})/\sim$$

with pairs (a, b) written $\frac{a}{b}$, and with equivalence given by

$$rac{a}{b}\simrac{c}{d}\Leftrightarrow ad=bc.$$

The operations are familiar:

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}, \qquad \frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}$$
$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}, \qquad \text{If } c \neq 0: \ \frac{a}{b} / \frac{c}{d} = \frac{ad}{bc}.$$

These operations respect the equivalence relation, since if *a* and *b* are scaled by the same $x \in \mathbb{N} \setminus \{0\}$, the same is true of the numerator and denominator on the right hand side.

Definition of $\ensuremath{\mathbb{Q}}$

In \mathbb{Q} , $0 = \frac{0}{1}$ is the additive identity and $1 = \frac{1}{1}$ is the multiplicative identity. The negative of an element $x = \frac{a}{b}$ is $-x = \frac{-a}{b}$. It now follows from the properties of the integers that \mathbb{Q} satisfies the axioms of ring. We check one of these.

Proof that + is associative in \mathbb{Q} .

Note that $\frac{a}{d} + \frac{b}{d} = \frac{a+b}{d}$, after cancelling a factor of d from numerator and denominator. Hence, making a common denominator

$$\left(\frac{p_1}{q_1} + \frac{p_2}{q_2}\right) + \frac{p_3}{q_3} = \frac{p_1 q_2 q_3 + q_1 p_2 q_3 + q_1 q_2 p_3}{q_1 q_2 q_3} = \frac{p_1}{q_1} + \left(\frac{p_2}{q_2} + \frac{p_3}{q_3}\right).$$

イロト 不得下 イヨト イヨト 二日

Definition of ${\mathbb Q}$

We identify $\mathbb{Z} \subset \mathbb{Q}$ with the map $f : \mathbb{Z} \to \mathbb{Q}$, $f(x) = \frac{x}{1}$. Note that f is injective and respects the ring structure, that is, f(a+b) = f(a) + f(b), f(1) = 1 and f(ab) = f(a)f(b).

(日) (周) (三) (三)

Axioms of a field

Definition

A *field* is a commutative ring R in which every $x \neq 0$ has a multiplicative inverse x^{-1} satisfying $xx^{-1} = 1$.

Let $r = \frac{p}{q} \in \mathbb{Q}$. If p > 0 then $r^{-1} = \frac{q}{p}$, while if p < 0 then $r^{-1} = \frac{-q}{-p}$. This arrangement makes \mathbb{Q} a field.

- 4 個 ト 4 国 ト - 4 国 ト - 三日

The field $\mathbb{Z}/p\mathbb{Z}$

Theorem

Let p > 1 be a prime. Then $\mathbb{Z}/p\mathbb{Z}$ is a field.

Proof.

Since $\mathbb{Z}/n\mathbb{Z}$ is a ring for any $n \ge 1$, it suffices to check that for n = p a prime that each $\overline{0} \ne \overline{x} \in \mathbb{Z}/p\mathbb{Z}$ has a multiplicative inverse. Choose the representative for the class \overline{x} with 0 < x < p. Since p does not divide x, GCD(x, p) = 1, and thus, by the Euclidean algorithm, there exists $b, y \in \mathbb{Z}$ such that xy + bp = 1. It follows that $\overline{xy} = \overline{1}$ so $\overline{y} = \overline{x}^{-1}$.

(日) (周) (三) (三)

Order axioms of fields

Definition

A field *F* is said to be *ordered* if there exists a set $F^+ \subset F$ of 'positive' elements, which satisfies the following properties.

If
$$x, y \in F^+$$
 so are $x + y$ and xy .

2 For each
$$0 \neq x \in F$$
, either $x \in F^+$ or $-x \in F^+$ but not both.

$$\bigcirc 0 \notin F^+$$

The order relation < is defined on F by a < b if and only if $b - a \in F^+$.

Note that < automatically satisfies the *trichotomy law*: for any $x, y \in F$, exactly one of x < y, x = y, y < x holds. Defining $\mathbb{Q}^+ = \left\{ \frac{a}{b} \in \mathbb{Q} : a > 0 \right\}$ makes \mathbb{Q} an ordered field.

The inverse function in $\mathbb{Z}/p\mathbb{Z}$

HW2 verifies that in an ordered field *F*, if $x, y \in F^+$ with x < y, then $y^{-1} < x^{-1}$.

The field $\mathbb{Z}/p\mathbb{Z}$ cannot be ordered, as $1 = (-1)^2$ is contained in F^+ for any ordered field, and since any element of $\mathbb{Z}/p\mathbb{Z}$ may be reached by adding 1 several times.

In general, the inverse function in $\mathbb{Z}/p\mathbb{Z}$ may appear quite disordered compared to the usual integer ordering. For instance, in $\mathbb{Z}/11\mathbb{Z}$,

$$(1^{-1}, 2^{-1}, ..., 10^{-1}) = (1, 6, 4, 3, 9, 2, 8, 7, 5, 10).$$

$\sqrt{2} \notin \mathbb{Q}$

 \mathbb{Q} permits the solution of linear equations ax = b but is unsatisfactory for the solution of some higher degree polynomial equations.

Theorem

The equation $x^2 = 2$ does not have a rational solution.

Proof.

Consider the set A of all pairs of natural numbers (a, b) for which a, b > 0and $a^2 = 2b^2$. If there is a rational solution to $x^2 = 2$, then A is non-empty, hence, by the well-ordering principle, there is a pair (a_0, b_0) which minimizes $a_0 + b_0$. Then a_0 is even, $a_0 = 2a_1$. It follows that $4a_1^2 = 2b_0^2$, so $2a_1^2 = b_0^2$. The pair (b_0, a_1) has a smaller sum, a contradiction.

イロト 不得下 イヨト イヨト

Bounds

Definition

Let *F* be an ordered field and let $S \subset F$ be a non-empty subset. An element $b \in F$ is an *upper bound* (resp. lower bound) for *S* if $\forall s \in S, s \leq b$ (resp. $s \geq b$).

< 4 →

3

The least upper bound and greatest lower bound

Definition

An element $b \in F$ is the *least upper bound* for non-empty set $S \subset F$, written

$$b = \sup S$$
,

if b is an upper bound for S, and if, for any b' which is an upper bound for S, $b \le b'$. An element $b \in F$ is the greatest lower bound for S, written

 $b = \inf S$,

if b is a lower bound for S, and if, for any b' a lower bound for S, $b \ge b'$.

Bounds and the least upper bound

Definition

An ordered field F is said to have the least upper bound (l.u.b.) property if any non-empty subset $S \subset F$ which is bounded above has a least upper bound.

Subfields

Definition

Let F_1, F_2 be fields. We say F_1 is a *subfield* of F_2 if there exists an injective map $f : F_1 \to F_2$ which respects the field structure, that is, f(a + b) = f(a) + f(b), f(ab) = f(a)f(b). In this case we identify $a \in F_1$ with $f(a) \in F_2$.

Theorem

Let F_1, F_2 be fields. An injective map $f : F_1 \to F_2$ which respects the field structure satisfies f(0) = 0, f(1) = 1, and for all $x \in F_1 \setminus \{0\}$, f(-x) = -f(x), and $f(x^{-1}) = f(x)^{-1}$.

See HW2.

Next lecture we construct $\mathbb R$ to be an ordered field which contains $\mathbb Q$ as a subfield, and which has the l.u.b. property.

イロト 不得下 イヨト イヨト 二日

Order property of $\ensuremath{\mathbb{Q}}$

Theorem

Let F be an ordered field and let $f : \mathbb{Q} \to F$ be an injective map which respects the field structure. For all $q \in \mathbb{Q}^+$, $f(q) \in F^+$.

Proof.

Since f(1) = 1 and $(-1)^2 = 1$ it follows that $1 \in F^+$. It may be proved by induction that $f(n) \in F^+$ for all $0 < n \in \mathbb{N}$. Now consider $\frac{p}{q} \in \mathbb{Q}^+$. Then $q \cdot \frac{p}{q} = p \in \mathbb{N}$. It follows that $f(q) \cdot f\left(\frac{p}{q}\right) = f(p) \in F^+$. Since $f(q) \in F^+$, it follows that $f\left(\frac{p}{q}\right) \in F^+$. (A positive times a negative is negative, as follows from the definition of F^+ .)

- 本間 と えき と えき とうき

Theorem

For every $x \ge 0$, $x \in \mathbb{R}$ there exists a unique $y \ge 0$, $y \in \mathbb{R}$ such that $y^2 = x$.

Proof.

Note that, if 0 < s < t then $0 < s^2 < st < t^2$. Thus, if a solution exists, it is unique.

Let $S = \{y > 0 : y^2 < x\}$. Since

$$(1+x)^2 = 1 + 2x + x^2 > x$$
,

(1 + x) is an upper bound for *S*. Note $\left(\frac{x}{1+x}\right)^2 < x$, so *S* is non-empty. Set $s = \sup S$.

Proof.

We show that $s^2 = x$, by ruling out $s^2 < x$ and $s^2 > x$. Suppose $s^2 < x$ and let $\epsilon = \min(\frac{x-s^2}{4s}, s)$. Then $s' = s + \epsilon$ satisfies

$$(s')^2 = s^2 + \epsilon(2s + \epsilon) \le s^2 + 3s\epsilon < x$$

so $s' \in S$, but s' > s, a contradiction. Suppose instead that $s^2 > x$. Let $\epsilon = \frac{s^2 - x}{2s}$ and $s' = s - \epsilon$. Then

$$(s')^2 = s^2 - 2\epsilon s + \epsilon^2 > s^2 - 2\epsilon s = x.$$

It follows that for any $y \in S$, y < s', so s' < s is a smaller upper bound for S, a contradiction.

(人間) とうき くうとう う

Theorem

The set \mathbb{N} is unbounded above in \mathbb{R} .

Proof.

Suppose bounded. Let $s = \sup \mathbb{N}$. Since $s - \frac{1}{2}$ is not an upper bound, there exists $n \in \mathbb{N}$ with $n \ge s - \frac{1}{2}$. It follows that n + 1 > s, a contradiction.

Theorem

For every real x there exists $n \in \mathbb{Z}$ with n > x. In fact, there exists $n \in \mathbb{Z}$ with $n \le x < n + 1$.

Proof.

- Assume first that x > 0. The set S = {n ∈ N : n > x} is non-empty, since otherwise x would be an upper bound for N. By the well-ordered property of N, S has a least element m. Then n = m − 1 satisfies n ≤ x < n + 1.
- If x < 0, choose $M \in \mathbb{N}$ with M > -x. Find m such that $m \le M + x < m + 1$. Then setting n = m M one has $n \le x < n + 1$.

(日) (周) (三) (三)

Theorem

If x > 0 and y is an arbitrary real number, then there exists $n \in \mathbb{N}$ such that nx > y.

Proof.

Choose any $n > \frac{y}{x}$.

-	
L'ob	Hoursh
000	TIOUEII

Food for thought

Write down a field with 4 elements.

D		
Rob	HOUG	r h
000	TIOUE	-

3