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Definition of Z

To form the integers Z from the natural numbers N the symbol − is
introduced. Let

−N = {−x : x ∈ N}.

As a set
Z = (N ∪ −N)/ ∼

where ∼ is an equivalence relation identifying 0 with −0. Formally,

x ∼ y ⇔
{

x = y if x , y ∈ N or x , y ∈ −N
x = 0, y = −0 if x ∈ N, y ∈ −N .
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Operations on Z

The usual conventions extending operations from N to Z apply. For
instance, we declare, for n ∈ Z,

−(−n) = n.

Multiplication is extended by

(−m)× n = m × (−n) = −(m × n), (−m)× (−n) = m × n.

When m = np and n 6= 0, integer division is defined by

−m

n
=

m

−n
= −p,

−m

−n
= p.
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Operations on Z

To extend addition from N to Z, recall the trichotomy principle of N:

Theorem (Trichotomy principle of N)

Let m, n ∈ N. Exactly one of m < n,m = n,m > n is true. If m < n then
m + 1 ≤ n.

Given m, n ∈ N, define

−m + n = n +−m =


x s.t. x + m = n if m < n
0 if m = n
−x s.t. x + n = m if m > n

.

Also, −m + (−n) = −(m + n).
Subtraction is defined on Z by m − n = m + (−n).
Define m ≤ n by n −m ∈ N.
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The properties of a commutative ring

Definition

A (commutative) ring is a set R together with two operations
+,× : R2 → R which satisfy the following properties:

1 +,× are commutative: a + b = b + a, a× b = b × a

2 +,× are associative: a + (b + c) = (a + b) + c,
(a× b)× c = a× (b × c)

3 Add. and mult. identity: There exist elements 0 6= 1 ∈ R such that,
∀a ∈ R, 0 + a = 1× a = a.

4 Additive inverse: For each a ∈ R there exists −a ∈ R such that
a + (−a) = 0.

5 × distributes over +: a× (b + c) = a× b + a× c .

Only additive inverses are missing from N.
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Deducing properties of Z from those of N

Checking the ring properties of Z from those of N when addition is
involved is a tedious case-by-case check. We verify the distributive
property.
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The distributive property

Proof that × distributes over + in Z.

(−a)× (b + c) = −(a× (b + c)) and
(−a)× b + (−a)× c = −(a× b + a× c), so suppose a ∈ N
Similarly, replacing both b with −b and c with −c flips the sign of
both sides of the equation, so assume b ∈ N.

If c ∈ N, apply the distributive property in N, so assume c ∈ −N

Write c = −c ′ with c ′ ∈ N. If b < c ′ write b + x = c ′. Then
a× b + a× x = a× c ′ follows from the distributive property of N, so

a× (b + c) = a× (−x) = −a× x = a× b + a× c .

The case b > c ′ is similar. If b = c ′, reduce to the identity

a× 0 = 0,

which may be checked by induction.
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Examples of rings

The ring Z[x ] of integer polynomials in a single variable x . These are
expressions of the form

P(x) = anxn + an−1xn−1 + ...+ a0 =
n∑

i=0

aix
i , n ∈ N,

where the coefficients an, ..., a0 are integers. The rules for adding and
multiplying polynomials are familiar from high-school algebra.
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Examples of rings

The ring Z[ε]/ε2 of integers with an infinitesimal. This set is given by

Z[ε]/ε2 = {a + bε : a, b ∈ Z}.

Addition and multiplication of these expressions is the same as for the ring
Z[ε] of polynomials in ε, except all terms involving ε2, ε3, ... are set to 0.
More formally, Z[ε]/ε2 may be expressed as the set Z2 with rules

(a, b)+(a′, b′) = (a+a′, b+b′), (a, b)×(a′, b′) = (a×a′, a×b′+a′×b).

We think of this ring as performing computation with one degree of
accuracy.
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Examples of rings

The ring Z[ε]/εn of integers with a degree n infinitesimal. This behaves
like Z[ε]/ε2, except terms in εj are kept for j < n.

We won’t check that the any of the above objects are rings, although I
encourage you to convince yourself of this fact (you are not responsible for
it on homeworks or exams).
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The division algorithm

Theorem (The division algorithm)

For each x ∈ Z and n ∈ N \ {0} there exists a unique q ∈ Z and r ∈ N,
0 ≤ r < n such that x = q × n + r .

q is called the quotient and r the residue. Warning: on many computer
implementations of integers, x

n gives the value q, ignoring r .

Proof.

See HW1 #5. (Note: as we didn’t introduce Z until this lecture, full
marks for solutions that treat only x ∈ N.)
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Modular arithmetic

Let n ∈ N, n > 1, and define an equivalence relation on Z by a ∼ b if and
only if n|(b− a). This is equivalent to a = qn + r , b = q′n + r for the same
residue r , 0 ≤ r < n in the division algorithm. The set Z/ ∼ is denoted

Z/nZ = {0, 1, ..., n − 1}.

(The bars are usually omitted).

Bob Hough Math 141: Lecture 2 August 31, 2016 12 / 38



Modular arithmetic

Z/nZ is given a ring structure by defining

a + b = a + b, a× b = a× b.

These are well-defined, since if a0 ∈ a, b0 ∈ b, then a0 = a + xn,
b0 = b + yn for some x , y ∈ Z, whence

a0 + b0 = a + b + (x + y)n, a0b0 = ab + (ay + bx + xyn)n

differ from a + b, ab by a multiple of n.
The additive identity is 0, mult. ident. is 1, and add. inverse of x is −x .
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Euclidean algorithm

Let m, n ∈ N. The greatest common divisor of m, n, denoted GCD(m, n) is
the largest d ∈ N such that d |m and d |n.

Theorem (Euclidean algorithm)

Let m > n ∈ N. Euclid’s algorithm

Initialize (a, b) = (m, n). While b 6= 0:

1 Apply the division algorithm to write a = bq + r

2 Replace (a, b) with (b, r) (so a := b, b := r)

3 Repeat

produces the pair (GCD(m, n), 0). Moreover, the algorithm can be used to
find x , y ∈ Z such xm + yn = GCD(m, n).
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Euclidean algorithm

Proof.

For all x ∈ Z and d ∈ N, if d |m and d |n then d |m + nx . Hence
GCD(m, n) = GCD(n,m + nx).

Write m = nq + r and choose x = −q to obtain
GCD(m, n) = GCD(n, r).

Let S = {a + b : (a, b) is produced by the algorithm}. By the
well-ordering principle, S has a least member a0 + b0 produced by
(a0, b0).

When writing a = qb + r , r < b, so the sum a + b decreases at each
step of the algorithm. Hence a0 = GCD(m, n), b0 = 0.

One checks by induction that if (a, b) is produced by the algorithm,
then there exist x , y , z ,w ∈ Z such that a = xm + yn, b = zm + wn.
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Primes

A natural number p > 1 is prime if the only natural numbers which divide
p are 1 and p.

Theorem

Let a, b ∈ N and let p be a prime. If p|ab then p|a or p|b (or both).

Proof.

Suppose p does not divide a. Then GCD(a, p) = 1. Apply the Euclidean
algorithm to find integer x , y such that xa + yp = 1. Multiply both sides
by b. Thus xab + ybp = b. If p|ab then p divides the left hand side, hence
p|b.
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Prime factorization

Theorem

Every n ∈ N, n > 1 is divisible by a prime.

For a proof, see HW2. In solving this problem it will be helpful to use a
variant of induction called ‘strong induction’. Suppose that one wishes to
prove a statement p(n) for all integers n. In strong induction, one
upgrades p(n) to the statement

P(n) = ∀m ≤ n, p(n).

Evidently p(n) is true for all n if and only if P(n) is true for all n, but in
making the inductive step, the inductive assumption in P(n) contains more
information.
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Prime factorization

Theorem (Prime factorization)

Let n ≥ 2 be a natural number. Then n has a unique representation as
n =

∏m
i=1 pei

i where p1, ..., pm are prime, pi < pj if i < j and each
ei ∈ N \ {0}.

Proof of existence.

Let P(n) be the statement every 1 < k ≤ n has a representation of the
given type.

Base case: n = 0, 1. True because nothing needs to be proved.

Inductive step: Assume P(n) for some n ≥ 1. If n + 1 is prime, then
n + 1 itself is a representation of this type. Otherwise n + 1 = pk
where p is prime and 1 < k < n + 1. It follows that k has a
representation of the given type, and multiplying by p, n + 1 does also.
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Prime factorization

Proof of uniqueness.

To prove the uniqueness, let S denote the set of n ≥ 2 that have two
distinct representations of the given type. If S is non-empty, then it has a
least element n > 1,

n =
m∏
i=1

pei
i =

k∏
j=1

q
fj
j .

Since p1|n, p1 divides one of q1, ..., qk (this requires a proof by induction,
which has been omitted), hence is equal to one of q1, ..., qk . Cancelling
this factor of p1 from both sides obtains a smaller example n

p1
∈ S , a

contradiction.
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Definition of Q

As a set,
Q = Z× (N \ {0})/ ∼

with pairs (a, b) written a
b , and with equivalence given by

a

b
∼ c

d
⇔ ad = bc.

The operations are familiar:

a

b
+

c

d
=

ad + bc

bd
,

a

b
− c

d
=

ad − bc

bd
a

b
× c

d
=

ac

bd
, If c 6= 0:

a

b

/ c

d
=

ad

bc
.

These operations respect the equivalence relation, since if a and b are
scaled by the same x ∈ N \ {0}, the same is true of the numerator and
denominator on the right hand side.
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Definition of Q

In Q, 0 = 0
1 is the additive identity and 1 = 1

1 is the multiplicative identity.
The negative of an element x = a

b is −x = −a
b . It now follows from the

properties of the integers that Q satisfies the axioms of ring. We check
one of these.

Proof that + is associative in Q.

Note that a
d + b

d = a+b
d , after cancelling a factor of d from numerator and

denominator. Hence, making a common denominator(
p1

q1
+

p2

q2

)
+

p3

q3
=

p1q2q3 + q1p2q3 + q1q2p3

q1q2q3
=

p1

q1
+

(
p2

q2
+

p3

q3

)
.
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Definition of Q

We identify Z ⊂ Q with the map f : Z→ Q, f (x) = x
1 . Note that f is

injective and respects the ring structure, that is, f (a + b) = f (a) + f (b),
f (1) = 1 and f (ab) = f (a)f (b).

Bob Hough Math 141: Lecture 2 August 31, 2016 22 / 38



Axioms of a field

Definition

A field is a commutative ring R in which every x 6= 0 has a multiplicative
inverse x−1 satisfying xx−1 = 1.

Let r = p
q ∈ Q. If p > 0 then r−1 = q

p , while if p < 0 then r−1 = −q
−p .

This arrangement makes Q a field.
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The field Z/pZ

Theorem

Let p > 1 be a prime. Then Z/pZ is a field.

Proof.

Since Z/nZ is a ring for any n ≥ 1, it suffices to check that for n = p a
prime that each 0 6= x ∈ Z/pZ has a multiplicative inverse. Choose the
representative for the class x with 0 < x < p. Since p does not divide x ,
GCD(x , p) = 1, and thus, by the Euclidean algorithm, there exists b, y ∈ Z
such that xy + bp = 1. It follows that xy = 1 so y = x−1.
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Order axioms of fields

Definition

A field F is said to be ordered if there exists a set F+ ⊂ F of ‘positive’
elements, which satisfies the following properties.

1 If x , y ∈ F+ so are x + y and xy .

2 For each 0 6= x ∈ F , either x ∈ F+ or −x ∈ F+ but not both.

3 0 6∈ F+.

The order relation < is defined on F by a < b if and only if b − a ∈ F+.

Note that < automatically satisfies the trichotomy law: for any x , y ∈ F ,
exactly one of x < y , x = y , y < x holds.
Defining Q+ =

{
a
b ∈ Q : a > 0

}
makes Q an ordered field.
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The inverse function in Z/pZ

HW2 verifies that in an ordered field F , if x , y ∈ F+ with x < y , then
y−1 < x−1.
The field Z/pZ cannot be ordered, as 1 = (−1)2 is contained in F+ for
any ordered field, and since any element of Z/pZ may be reached by
adding 1 several times.
In general, the inverse function in Z/pZ may appear quite disordered
compared to the usual integer ordering. For instance, in Z/11Z,

(1−1, 2−1, ..., 10−1) = (1, 6, 4, 3, 9, 2, 8, 7, 5, 10).
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√
2 6∈ Q

Q permits the solution of linear equations ax = b but is unsatisfactory for
the solution of some higher degree polynomial equations.

Theorem

The equation x2 = 2 does not have a rational solution.

Proof.

Consider the set A of all pairs of natural numbers (a, b) for which a, b > 0
and a2 = 2b2. If there is a rational solution to x2 = 2, then A is
non-empty, hence, by the well-ordering principle, there is a pair (a0, b0)
which minimizes a0 + b0. Then a0 is even, a0 = 2a1. It follows that
4a21 = 2b2

0, so 2a21 = b2
0. The pair (b0, a1) has a smaller sum, a

contradiction.
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Bounds

Definition

Let F be an ordered field and let S ⊂ F be a non-empty subset. An
element b ∈ F is an upper bound (resp. lower bound) for S if
∀s ∈ S , s ≤ b (resp. s ≥ b).
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The least upper bound and greatest lower bound

Definition

An element b ∈ F is the least upper bound for non-empty set S ⊂ F ,
written

b = sup S ,

if b is an upper bound for S , and if, for any b′ which is an upper bound for
S , b ≤ b′. An element b ∈ F is the greatest lower bound for S , written

b = inf S ,

if b is a lower bound for S , and if, for any b′ a lower bound for S , b ≥ b′.
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Bounds and the least upper bound

Definition

An ordered field F is said to have the least upper bound (l.u.b.) property
if any non-empty subset S ⊂ F which is bounded above has a least upper
bound.
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Subfields

Definition

Let F1,F2 be fields. We say F1 is a subfield of F2 if there exists an
injective map f : F1 → F2 which respects the field structure, that is,
f (a + b) = f (a) + f (b), f (ab) = f (a)f (b). In this case we identify a ∈ F1

with f (a) ∈ F2.

Theorem

Let F1,F2 be fields. An injective map f : F1 → F2 which respects the field
structure satisfies f (0) = 0, f (1) = 1, and for all x ∈ F1 \ {0},
f (−x) = −f (x), and f (x−1) = f (x)−1.

See HW2.
Next lecture we construct R to be an ordered field which contains Q as a
subfield, and which has the l.u.b. property.
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Order property of Q

Theorem

Let F be an ordered field and let f : Q→ F be an injective map which
respects the field structure. For all q ∈ Q+, f (q) ∈ F+.

Proof.

Since f (1) = 1 and (−1)2 = 1 it follows that 1 ∈ F+. It may be proved by
induction that f (n) ∈ F+ for all 0 < n ∈ N. Now consider p

q ∈ Q+. Then

q · pq = p ∈ N. It follows that f (q) · f
(
p
q

)
= f (p) ∈ F+. Since

f (q) ∈ F+, it follows that f
(
p
q

)
∈ F+. (A positive times a negative is

negative, as follows from the definition of F+.)
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Consequences of the l.u.b. property

Theorem

For every x ≥ 0, x ∈ R there exists a unique y ≥ 0, y ∈ R such that
y2 = x.

Proof.

Note that, if 0 < s < t then 0 < s2 < st < t2. Thus, if a solution exists, it
is unique.
Let S = {y > 0 : y2 < x}. Since

(1 + x)2 = 1 + 2x + x2 > x ,

(1 + x) is an upper bound for S . Note
(

x
1+x

)2
< x , so S is non-empty.

Set s = sup S .
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Consequences of the l.u.b. property

Proof.

We show that s2 = x , by ruling out s2 < x and s2 > x .
Suppose s2 < x and let ε = min( x−s

2

4s , s). Then s ′ = s + ε satisfies

(s ′)2 = s2 + ε(2s + ε) ≤ s2 + 3sε < x

so s ′ ∈ S , but s ′ > s, a contradiction.
Suppose instead that s2 > x . Let ε = s2−x

2s and s ′ = s − ε. Then

(s ′)2 = s2 − 2εs + ε2 > s2 − 2εs = x .

It follows that for any y ∈ S , y < s ′, so s ′ < s is a smaller upper bound
for S , a contradiction.
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Consequences of the l.u.b. property

Theorem

The set N is unbounded above in R.

Proof.

Suppose bounded. Let s = supN. Since s− 1
2 is not an upper bound, there

exists n ∈ N with n ≥ s − 1
2 . It follows that n + 1 > s, a contradiction.
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Consequences of the l.u.b. property

Theorem

For every real x there exists n ∈ Z with n > x. In fact, there exists n ∈ Z
with n ≤ x < n + 1.

Proof.

Assume first that x > 0. The set S = {n ∈ N : n > x} is non-empty,
since otherwise x would be an upper bound for N. By the
well-ordered property of N, S has a least element m. Then n = m− 1
satisfies n ≤ x < n + 1.

If x < 0, choose M ∈ N with M > −x . Find m such that
m ≤ M + x < m + 1. Then setting n = m−M one has n ≤ x < n + 1.
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Consequences of the l.u.b. property

Theorem

If x > 0 and y is an arbitrary real number, then there exists n ∈ N such
that nx > y.

Proof.

Choose any n > y
x .

Bob Hough Math 141: Lecture 2 August 31, 2016 37 / 38



Food for thought

Write down a field with 4 elements.
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