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Definition of Z

To form the integers Z from the natural numbers N the symbol — is
introduced. Let

—N={—x:x €N}
As a set
Z=(NU-N)/~

where ~ is an equivalence relation identifying 0 with —0. Formally,

X=y if x,)yeNorx,ye—-N
x y@){x:o,y:—o if xeN,ye -N
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Operations on Z

The usual conventions extending operations from N to Z apply. For
instance, we declare, for n € Z,

—(—n) =n.
Multiplication is extended by
(=m)x n=mx (—n)=—(m x n), (—=m) x (=n) = m x n.

When m = np and n # 0, integer division is defined by

—m m —m
—=—=-p  ——=p
n —n —n
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Operations on Z

To extend addition from N to Z, recall the trichotomy principle of N:

Theorem (Trichotomy principle of N)

Let m,n € N. Exactly one of m < n,m = n,m > n is true. If m < n then
m+1<n.

Given m, n € N, define

xXst.x+m=n if m<n
-m+n=n+-m= 0 fm=n .
—Xst. x+n=m if m>n

Also, —m+ (—n) = —(m+ n).
Subtraction is defined on Z by m — n = m+ (—n).
Define m<nby n—meN.
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The properties of a commutative ring

Definition
A (commutative) ring is a set R together with two operations
+, x : R? = R which satisfy the following properties:
©Q +, x are commutative: a+b=b+a,axb=bxa
@ +, x are associative: a+ (b+c)=(a+b)+c,
(axb)xc=ax(bxc)
© Add. and mult. identity: There exist elements 0 # 1 € R such that,
VaeR,0+a=1xa=a.
@ Additive inverse: For each a € R there exists —a € R such that
a+(—a)=0.
@ X distributes over +: ax (b+c)=axb+axc.

Only additive inverses are missing from N.
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Deducing properties of Z from those of N

Checking the ring properties of Z from those of N when addition is

involved is a tedious case-by-case check. We verify the distributive
property.
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The distributive property

Proof that x distributes over + in Z.
o (—a)x(b+c)=—(ax(b+c)) and
(—a) x b+ (—a) x c=—(ax b+ ax c), so suppose a € N

@ Similarly, replacing both b with —b and ¢ with —c flips the sign of
both sides of the equation, so assume b € N.

o If c € N, apply the distributive property in N, so assume ¢ € —N

Write ¢ = —c’ with ¢/ e N. If b < ¢/ write b+ x = ¢’. Then
ax b+ axx=ax c follows from the distributive property of N, so

ax(b+c)=ax(—x)=—-axx=axb+axec.
The case b > ¢’ is similar. If b = ¢, reduce to the identity
ax0=0,

which may be checked by induction.
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Examples of rings

The ring Z[x] of integer polynomials in a single variable x. These are
expressions of the form

n
P(x) = apx" + a1xX" 4+ . +ag= Z ajx', neN,
i=0

where the coefficients a,, ..., ag are integers. The rules for adding and
multiplying polynomials are familiar from high-school algebra.
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Examples of rings

The ring Z[e]/€? of integers with an infinitesimal. This set is given by
Zle]/e* = {a+ be: a,b e Z}.

Addition and multiplication of these expressions is the same as for the ring
Z[e] of polynomials in €, except all terms involving €2, €3, ... are set to 0.
More formally, Z[e]/€> may be expressed as the set Z? with rules

(a, b)+ (', b)) = (a+4d', b+ V), (a, b)x(a',b) = (axa’,ax b’ +a xb).

We think of this ring as performing computation with one degree of
accuracy.
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Examples of rings

The ring Z[e]/€" of integers with a degree n infinitesimal. This behaves
like Z[e] /€2, except terms in € are kept for j < n.

We won't check that the any of the above objects are rings, although |

encourage you to convince yourself of this fact (you are not responsible for
it on homeworks or exams).
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The division algorithm

Theorem (The division algorithm)

For each x € Z and n € N\ {0} there exists a unique q € Z and r € N,
0<r<nsuchthatx=qxn-+r.

q is called the quotient and r the residue. Warning: on many computer
implementations of integers, > gives the value g, ignoring r.
Proof.

See HW1 #5. (Note: as we didn't introduce Z until this lecture, full
marks for solutions that treat only x € N.) O
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Modular arithmetic

Let n € N, n > 1, and define an equivalence relation on Z by a ~ b if and
only if n|(b— a). This is equivalent to a = gn+r, b = ¢'n+ r for the same
residue r, 0 < r < n in the division algorithm. The set Z/ ~ is denoted

Z/nZ =1{0,1,....,n—1}.

(The bars are usually omitted).
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Modular arithmetic

Z/nZ is given a ring structure by defining

a+b=a+ b, axb=axb.

These are well-defined, since if ag € 3, by € b, then ag = a + xn,
by = b+ yn for some x,y € Z, whence

a+bo=a+b+ (x+y)n, agby = ab + (ay + bx + xyn)n

differ from a + b, ab by a multiple of n.
The additive identity is 0, mult. ident. is I, and add. inverse of X is —x.
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Euclidean algorithm

Let m,n € N. The greatest common divisor of m, n, denoted GCD(m, n) is
the largest d € N such that d|m and d|n.

Theorem (Euclidean algorithm)

Let m > n € N. Euclid’s algorithm

Initialize (a, b) = (m, n). While b # 0:
@ Apply the division algorithm to write a = bq + r
@ Replace (a, b) with (b,r) (soa:=b, b:=r)
© Repeat

produces the pair (GCD(m, n),0). Moreover, the algorithm can be used to
find x,y € Z such xm + yn = GCD(m, n).

v
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Euclidean algorithm

Proof.

e Forall x € Z and d € N, if d|m and d|n then d|m + nx. Hence
GCD(m, n) = GCD(n, m + nx).

o Write m = nqg + r and choose x = —q to obtain
GCD(m, n) = GCD(n, r).

o Let S={a+ b:(a,b) is produced by the algorithm}. By the
well-ordering principle, S has a least member ag + by produced by
(a0, bo).

@ When writing a = gb+ r, r < b, so the sum a + b decreases at each
step of the algorithm. Hence ag = GCD(m, n), by = 0.

@ One checks by induction that if (a, b) is produced by the algorithm,
then there exist x, y,z, w € Z such that a = xm + yn, b = zm + wn.

Ol

v
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Primes

A natural number p > 1 is prime if the only natural numbers which divide
pareland p.

Theorem
Let a,b € N and let p be a prime. If p|ab then p|a or p|b (or both).

Proof.

Suppose p does not divide a. Then GCD(a, p) = 1. Apply the Euclidean
algorithm to find integer x, y such that xa + yp = 1. Multiply both sides
by b. Thus xab+ ybp = b. If p|ab then p divides the left hand side, hence
p|b. O

v
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Prime factorization

Theorem
Every n € N, n > 1 is divisible by a prime. J

For a proof, see HW2. In solving this problem it will be helpful to use a
variant of induction called ‘strong induction’. Suppose that one wishes to
prove a statement p(n) for all integers n. In strong induction, one
upgrades p(n) to the statement

P(n) =¥m < n, p(n).
Evidently p(n) is true for all n if and only if P(n) is true for all n, but in

making the inductive step, the inductive assumption in P(n) contains more
information.
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Prime factorization

Theorem (Prime factorization)

Let n > 2 be a natural number. Then n has a unique representation as

n=T[[",p" where pi, ..., pm are prime, p; < p; if i < j and each
e € N\ {0}

Proof of existence.

Let P(n) be the statement every 1 < k < n has a representation of the
given type.
@ Base case: n=0,1. True because nothing needs to be proved.

@ Inductive step: Assume P(n) for some n > 1. If n+ 1 is prime, then
n+ 1 itself is a representation of this type. Otherwise n + 1 = pk
where p is prime and 1 < k < n+ 1. It follows that k has a
representation of the given type, and multiplying by p, n+ 1 does also.

Ol

v
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Prime factorization

Proof of uniqueness.

To prove the uniqueness, let S denote the set of n > 2 that have two
distinct representations of the given type. If S is non-empty, then it has a

least element n > 1,

m k .

n=11e =114

=1 j=1
Since p1|n, p1 divides one of g1, ..., g (this requires a proof by induction,
which has been omitted), hence is equal to one of g, ..., g¢. Cancelling
this factor of p; from both sides obtains a smaller example ﬁ €S, a
contradiction. O

v
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Definition of Q

As a set,
Q=7 x(N\{0})/ ~

with pairs (a, b) written 2, and with equivalence given by

a ¢
E'\’E@ad—bc.
The operations are familiar:
i+£_ad+bc a ¢ ad—bc
b d bd ’ b d  bd
a ¢ ac
S amhe ervl o=t

These operations respect the equivalence relation, since if a and b are

scaled by the same x € N\ {0}, the same is true of the numerator and
denominator on the right hand side.
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Definition of Q

InQ, 0= % is the additive identity and 1 = % is the multiplicative identity.

The negative of an element x = 7 is —x = =*. It now follows from the
properties of the integers that QQ satisfies the axioms of ring. We check

one of these.
Proof that + is associative in Q.

Note that § + 3 = %b, after cancelling a factor of d from numerator and
denominator. Hence, making a common denominator

(&JFQ)JFEZP1q2q3+q1P2q3+Q1fJ2P3 _ﬂJr(Per@)'

QG a3 19243 o \@ g

O]

v
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Definition of Q

We identify Z C Q with the map f : Z — Q, f(x) = {. Note that f is
injective and respects the ring structure, that is, f(a + b) = f(a) + f(b),
f(1) =1 and f(ab) = f(a)f(b).
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Axioms of a field

Definition
A field is a commutative ring R in which every x % 0 has a multiplicative
inverse x~! satisfying xx ! = 1.

Let r:%é@. If p > 0 then r‘lzﬁ, while if p < 0 then r~1 = =9,
This arrangement makes Q a field.
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The field Z/pZ

Theorem
Let p > 1 be a prime. Then Z/pZ is a field.

Proof.

Since Z/nZ is a ring for any n > 1, it suffices to check that for n = p a
prime that each 0 # X € Z/pZ has a multiplicative inverse. Choose the
representative for the class X with 0 < x < p. Since p does not divide x,
GCD(x, p) = 1, and thus, by the Euclidean algorithm, there exists b,y € Z
such that xy + bp = 1. It follows that Xy = 1so y = x L. Ol

v
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Order axioms of fields

Definition
A field F is said to be ordered if there exists a set F™ C F of ‘positive’
elements, which satisfies the following properties.
Q Ifx,y € F" soare x+ y and xy.
@ For each 0 # x € F, either x € F* or —x € FT but not both.
Q@O0¢&F™.
The order relation < is defined on F by a< bifandonlyif b—ac FT.

v

Note that < automatically satisfies the trichotomy law: for any x,y € F,
exactly one of x < y, x =y, y < x holds.
Defining @t = {2 € Q: a > 0} makes Q an ordered field.
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The inverse function in Z/pZ

HW2 verifies that in an ordered field F, if x,y € F' with x < y, then
-1 -1

y b <x L

The field Z/pZ cannot be ordered, as 1 = (—1)? is contained in F* for

any ordered field, and since any element of Z/pZ may be reached by

adding 1 several times.

In general, the inverse function in Z/pZ may appear quite disordered

compared to the usual integer ordering. For instance, in Z/117,

(17271 ...,1071) = (1,6,4,3,9,2,8,7,5,10).
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V24 Q

Q permits the solution of linear equations ax = b but is unsatisfactory for
the solution of some higher degree polynomial equations.

Theorem

The equation x*> = 2 does not have a rational solution.

Proof.

Consider the set A of all pairs of natural numbers (a, b) for which a,b > 0
and a® = 2b?. If there is a rational solution to x*> = 2, then A is
non-empty, hence, by the well-ordering principle, there is a pair (ag, bo)
which minimizes ag + by. Then ag is even, ag = 2a;. It follows that

4a% = 2b3, so 2a? = b3. The pair (b, a1) has a smaller sum, a
contradiction. ]
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Bounds

Definition
Let F be an ordered field and let S C F be a non-empty subset. An
element b € F is an upper bound (resp. lower bound) for S if

Vs € S,s < b (resp. s > b).
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The least upper bound and greatest lower bound

Definition
An element b € F is the least upper bound for non-empty set S C F,
written

b=supS§,

if b is an upper bound for S, and if, for any b’ which is an upper bound for
S, b< b'. An element b € F is the greatest lower bound for S, written

b=infS,

if bis a lower bound for S, and if, for any b’ a lower bound for S, b > b'.

v
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Bounds and the least upper bound

Definition
An ordered field F is said to have the least upper bound (l.u.b.) property

if any non-empty subset S C F which is bounded above has a least upper
bound.
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Subfields

Definition

Let Fq, F> be fields. We say F; is a subfield of F; if there exists an
injective map f : F; — F, which respects the field structure, that is,
f(a+ b) = f(a) + f(b), f(ab) = f(a)f(b). In this case we identify a € F;
with f(a) € Fp.

Theorem

Let F1, F> be fields. An injective map f : F; — F» which respects the field
structure satisfies f(0) =0, f(1) =1, and for all x € F; \ {0},

f(—x) = —f(x), and f(x~1) = f(x)~ .

See HW2.
Next lecture we construct R to be an ordered field which contains Q as a
subfield, and which has the l.u.b. property.
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Order property of Q

Theorem

Let F be an ordered field and let f : Q — F be an injective map which
respects the field structure. For all g € Q, f(q) € F™.

Proof.

Since f(1) =1 and (—1)2 = 1 it follows that 1 € F*. It may be proved by
induction that f(n) € F* for all 0 < n € N. Now consider £ € Q. Then

q- g = p € N. It follows that f(q) - f (’—;) = f(p) € F'. Since

f(q) € FT, it follows that f (g) € F*. (A positive times a negative is

negative, as follows from the definition of FT.) Ol

v
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Consequences of the l.u.b. property

Theorem

For every x > 0, x € R there exists a unique y > 0, y € R such that
2
ye=x.

Proof.

Note that, if 0 < s < t then 0 < s2 < st < t2. Thus, if a solution exists, it
is unique.

Let S={y >0:y? < x}. Since

(L+x)?=1+2x+x>> x,

+x
Set s =sup S. O

v

2
(1+ x) is an upper bound for S. Note (%) < X, so S is non-empty.
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Consequences of the l.u.b. property

Proof.

We show that s? = x, by ruling out s?> < x and s > x.

2 -
Suppose 52 < x and let € = min(*7=-,s). Then s’ = s + ¢ satisfies

(s')2 = s + €(25 + €) < 5% + 3s¢ < x

sos’ €S, but s’ > s, a contradiction.

Suppose instead that s2 > x. Let € = 522;)( and s’ = s —e¢. Then

(s')> = 5% —2es + €2 > 5% — 2es = x.

It follows that for any y € S, y < s’, so s’ < s is a smaller upper bound
for S, a contradiction.
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Consequences of the l.u.b. property

Theorem
The set N is unbounded above in R.

Proof.

Suppose bounded. Let s = supN. Since s — % is not an upper bound, there

exists n € N with n > s — % It follows that n+1 > s, a contradiction. [

v
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Consequences of the l.u.b. property

Theorem

For every real x there exists n € 7, with n > x. In fact, there exists n € 7.
withn<x<n+1.

Proof.

@ Assume first that x > 0. The set S = {n € N: n > x} is non-empty,
since otherwise x would be an upper bound for N. By the
well-ordered property of N, S has a least element m. Then n=m—1
satisfies n < x < n+ 1.

e If x <0, choose M € N with M > —x. Find m such that
m< M+x < m+1. Then settingn=m—Monehasn < x < n+1.

O]

v
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Consequences of the l.u.b. property

Theorem

If x > 0 and y is an arbitrary real number, then there exists n € N such
that nx > y.

Proof.

y
Choose any n > 7.

[m] = =
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Food for thought

Write down a field with 4 elements.
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