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Series of positive terms

Recall that, given a sequence {an}∞n=1, we say that its series
∑∞

n=1 an
converges if the sequence of partial sums {sn}∞n=1

sn =
n∑

k=1

ak ,

converges. We begin by giving some criteria for the convergence in the
case when the terms an are non-negative.
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Comparison test

Theorem (Comparison test)

Let {an}∞n=1 and {bn}∞n=1 be two sequences such that an ≥ 0 and bn ≥ 0
for all n ≥ 1. Suppose there is a number N and a constant c > 0 such that

an ≤ cbn

for all n > N. Then convergence of
∑∞

n=1 bn implies convergence of∑∞
n=1 an.

In this case, we say that the sequence bn dominates the sequence an.
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Comparison test

Proof of the comparison test.

Suppose that
∑∞

n=1 bn converges.

Given ε > 0, apply the Cauchy property of the sequence of partial
sums of bn to choose M > N such that m > n > M implies

n∑
k=m+1

bn <
ε

c
.

It follows that
n∑

k=m+1

an ≤
n∑

k=m+1

cbn < ε,

so the sequence of partial sums of an is Cauchy, hence converges.
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Limit comparison test

Theorem (Limit comparison test)

Let {an}∞n=1 and {bn}∞n=1 be sequences satisfying an > 0 and bn > 0 for all
n ≥ 1. Suppose that

lim
n→∞

an
bn

= 1.

Then
∑∞

n=1 an converges if and only if
∑∞

n=1 bn converges.

Proof.

The condition implies that there is N such that n > N implies

an
2
≤ bn ≤ 2an.

It now follows from the comparison test that
∑∞

n=1 an converges if and
only if

∑∞
n=1 bn converges.
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Examples

Recall that last class we checked

∞∑
n=1

1

n2 + n
=
∞∑
n=1

1

n(n + 1)
=
∞∑
n=1

(
1

n
− 1

n + 1

)
= 1

since the series telescopes. Since limn→∞
n2+n
n2

= limn→∞ 1 + 1
n = 1,

it follows that
∑∞

n=1
1
n2

converges.

By comparison, it follows that
∑∞

n=1
1
ns converges for all s ≥ 2.
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Examples

Recall that the harmonic series satisfies
∑∞

n=1
1
n =∞. One may

check that

∞∑
n=1

1√
n(n + 10)

=∞,
∞∑
n=1

sin
1

n
=∞

by noting that

lim
n→∞

√
n(n + 10)

n
= lim

n→∞

√
1 +

10

n
= 1,

and

lim
n→∞

sin 1
n

1
n

= lim
n→∞

n

(
1

n
+ O

(
1

n3

))
= lim

n→∞
1 + O

(
1

n2

)
= 1.
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Integral test

Theorem (Integral test)

Let f be a positive decreasing function, defined for all real x ≥ 1. The
infinite series

∑∞
n=1 f (n) converges if and only if the improper integral∫∞

1 f (x)dx converges.
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Integral test

Proof of the integral test.

We first check that the improper integral converges if and only if the
sequence

{
tn =

∫ n
1 f (x)dx

}∞
n=1

converges.

Recall that convergence of the improper integral is defined by the
existence of the limit limx→∞

∫ x
1 f (t)dt.

Evidently convergence of the integral entails convergence of the
sequence as a special case.

To check the reverse direction, note that for n ≤ x ≤ n + 1,
tn ≤

∫ x
1 f (t)dt ≤ tn+1, and hence, if |tn − L| < ε for all n ≥ N, then∣∣∣∣∫ x

1
f (t)dt − L

∣∣∣∣ < ε

for all x ≥ N also.
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Integral test

Proof of the integral test.

We now show that {tn}∞n=1 converges if and only if the sequence of
partial sums {sn =

∑n
k=1 f (k)}∞k=1 converges.

Given m > n, note that by taking upper and lower step functions for
the integral,

m−1∑
k=n

f (k) ≥ tm − tn =

∫ m

n
f (t)dt ≥

m∑
k=n+1

f (k)

and hence {tn}∞n=1 is Cauchy if and only if {sn}∞n=1 is Cauchy, which
proves the claim.
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Examples

We can show that the series
∑∞

n=1
1
ns , s real, converges if and only if

s > 1. To check this, note that

tn =

∫ n

1

dt

ts
=

{
n1−s−1
1−s s 6= 1

log n s = 1
.

This sequence converges if and only if s > 1.

For complex s = σ + it, 1
ns = 1

nσ exp (it log n) . Since
|exp (it log n)| = 1, the sum

ζ(s) =
∞∑
n=1

1

ns

converges absolutely if σ = <(s) > 1. This function is called the
Riemann zeta function.
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Examples

The study of the analytic properties of the Riemann zeta function and
related functions is responsible for a great deal of the information that we
know about the prime numbers.
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Root test

Theorem (Root test)

Let
∑∞

n=1 an be a series of non-negative terms. Suppose that

a
1
n
n → R, n→∞.

If R < 1 then the series converges. If R > 1 then the series diverges.
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Root test

Proof of the root test.

Let x = R+1
2 so that R < x < 1 if x < 1 and 1 < x < R if R > 1.

Suppose R < 1. Then, for all n sufficiently large,

an < xn.

The series converges by comparison with the geometric series
∑∞

n=1 xn.
Suppose instead that R > 1. Then for all n sufficiently large,

an > xn

so that the series diverges by comparison with the geometric series∑∞
n=1 xn.
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Example

We apply the root test to the series
∑∞

n=1

(
n

n+1

)n2
. Calculate

a
1
n
n =

(
n

n + 1

)n

=

(
1

1 + 1
n

)n

→ 1

e
.

Thus the series converges.
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Ratio test

Theorem

Let
∑∞

n=1 an be a sum of positive terms such that

an+1

an
→ L, n→∞.

The series converges if L < 1 and diverges if L > 1.
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Ratio test

Proof of the ratio test.

If L > 1 then the series does not converge since the terms do not tend to 0.
If L < 1, let

L < x =
L + 1

2
< 1.

Choose N sufficiently large, so that if n ≥ N then an+1

an
< x . It follows

that, for all n > N,

an = aN

n−1∏
k=N

ak+1

ak
≤ aNxn−N =

aN
xN

xn.

Since aN
xN

is just a constant, the series converges by comparison with the
geometric series

∑∞
n=1 xn.
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Examples

Consider the series
∑∞

n=1
n!
nn . Applying the ratio test, as n→∞,

an+1

an
=

(n + 1)!

(n + 1)n+1
· nn

n!
=

(
n

n + 1

)n

=
1

(1 + 1/n)n
→ 1

e
.

Hence the series converges.
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Edge cases

The ratio and root tests are not useful in the case an+1

an
→ 1 as n→∞.

Note that
∑∞

n=1
1
n =∞ while

∑∞
n=1

1
n2

converges. The ratios of
consecutive terms in these cases are given by

n

n + 1
= 1− 1

n
+ O

(
1

n2

)
,

n2

(n + 1)2
= 1− 2

n
+ O

(
1

n2

)
.

The following two tests of Raabe and Gauss sometimes help to decide
convergence in cases where the limiting ratio is 1.
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Raabe’s test

Theorem (Raabe’s test)

Let
∑∞

n=1 an be a sum of positive terms. If there is an r > 0 and N ≥ 1
such that, for all n ≥ N,

an+1

an
≤ 1− 1

n
− r

n

then
∑∞

n=1 an converges. If, for all n ≥ N,

an+1

an
≥ 1− 1

n

then
∑∞

n=1 an =∞.
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An inequality for the logarithm

In the first part of the proof of Raabe’s test we use the inequality

log(1 + x) ≤ x , −1 < x .

To check this inequality, note equality holds at x = 0. Also, x − log(1 + x)
has derivative 1− 1

1+x , which changes sign at x = 0. It follows that the
function decreases to 0, and increases thereafter.
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Raabe’s test

Proof of Raabe’s test.

Assume first that an+1

an
≤ 1− 1+r

n for n > N. Thus, for n > N,

an ≤ aN

n−1∏
k=N

(
1− r + 1

k

)
≤ aN exp

(
−

n−1∑
k=N

r + 1

k

)
.

There is some constant C (which depends on N) such that

n−1∑
k=N

1

k
≥ −C + log n.

Hence, there is another constant c , depending on N, such that an ≤ c
n1+r

for n > N. The series thus converges by comparison with
∑∞

n=1
1

n1+r .
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Raabe’s test

Proof of Raabe’s test.

Now assume that an+1

an
≥ 1− 1

n for n > N ≥ 1. Thus, for n > N,

an ≥ aN

n−1∏
k=N

(
1− 1

k

)
.

Note that the product is equal to
∏n−1

k=N
k−1
k = N−1

n−1 , since it telescopes.
Since there is a constant c (depending on N) such that an >

c
n−1 for all

n > N, the series diverges by comparison with the harmonic series.
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Gauss’s test

Theorem (Gauss’s test)

Let
∑∞

n=1 an be a series of positive terms. If there is an N ≥ 1, an s > 1
and an M > 0 such that for all n > N,

an+1

an
= 1− A

n
+

f (n)

ns

where |f (n)| ≤ M for all n, then
∑∞

n=1 an converges if A > 1 and diverges
if A ≤ 1.
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Gauss’s test

Proof of Gauss’s test.

Let N be sufficiently large, and write, for n > N,

an = aN

n−1∏
k=N

ak+1

ak
= aN

n−1∏
k=N

(
1− A

k
+

f (k)

ks

)
.

Since A
k −

f (k)
ks tends to 0 as k →∞ we may write

log
(

1− A
k + f (k)

ks

)
= −A

k + f (k)
ks + O

(
1
k2

)
. Hence

an = aN exp

(
n−1∑
k=N

(
−A

k
+

f (k)

ks
+ O

(
1

k2

)))
= aN exp (−A log n + O(1)) .

The series thus converges or diverges according as A > 1 or otherwise, by
comparison with the sum

∑
n

1
nA

.
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Examples

Consider the series
∑∞

n=1

(
1·3·5···(2n−1)
2·4·6···(2n)

)k
. The ratio an

an−1
of this

sequence is given by(
2n − 1

2n

)k

=

(
1− 1

2n

)k

= exp

(
k

(
− 1

2n
+ O

(
1

n2

)))
= 1− k

2n
+ O

(
1

n2

)
as n→∞. Hence the series converges for k > 2 and diverges for
k ≤ 2 by Gauss’s test.
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Power series

Definition

Let {an}∞n=0. The series P(x) =
∑∞

n=0 anxn is called the power series
associated to {an}∞n=0.

The series
∑∞

n=0 anxn is sometimes also called a (linear) generating
function of {an}∞n=0. We’ll return to study power series in more detail in
the next several lectures, but point out some basic properties now.
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Power series

Theorem

Let {an}∞n=0 be a sequence. Define R = 0 if {|an|
1
n }∞n=1 is unbounded,

R =∞ if |an|
1
n → 0, and

1

R
= lim sup

n→∞
|an|

1
n

otherwise. The power series P(x) =
∑∞

n=0 anxn converges absolutely in
the disc DR(0) = {x ∈ C : |x | < R} and diverges for |x | > R.

Definition

As defined, R is called the radius of convergence of the power series
P(x) =

∑∞
n=0 anxn.
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Power series

Proof.

First suppose R = 0, so that |an|
1
n is unbounded. It follows that for

any x 6= 0, |anxn|
1
n = |an|

1
n |x | is unbounded. The power series P(x)

diverges since its terms do not tend to 0.

Next suppose R =∞ so that |an|
1
n → 0. Then for any x ∈ C,

|anxn|
1
n = |an|

1
n |x | → 0, so that the power series converges absolutely,

by comparison with a geometric series.

Finally, suppose that R > 0 is finite. For |x | < R,

lim sup
n→∞

|anxn|
1
n = lim sup

n→∞
|an|

1
n |x | =

|x |
R

< 1.

The series thus converges absolutely by comparison with a geometric
series. If instead |x | > R, then the limsup is |x |R > 1, and the power
series does not converge since its terms do not tend to 0.
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Solving linear recurrences

A linear recurrence sequence is a sequence in which successive terms are
defined as a linear combination of a bounded number of terms preceeding
them (and possibly an auxiliary function). Examples include

The Fibonacci numbers, F0 = F1 = 1, for n ≥ 2, Fn = Fn−1 + Fn−2.

The number of steps needed to solve the Towers of Hanoi with n
discs, T0 = 0, Tn+1 = 2Tn + 1. (Tn = 2n − 1).

The number of regions into which the plane is split by n lines in
general position (pairwise non-parallel), L0 = 1, Ln+1 = Ln + n + 1.
(Ln = 1 +

(n+1
2

)
).
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Solving linear recurrences

Although there are other methods, often the easiest way of solving linear
recurrences is through writing down the power series generating function.

Fibonacci numbers: Let f (x) =
∑∞

n=0 Fnxn. By the recurrence
relation,

f (x) = 1 + x +
∞∑
n=2

Fnxn

= 1 + x +
∞∑
n=2

(Fn−2 + Fn−1)xn

= 1 + (x + x2)f (x).

Hence f (x)(1− x − x2) = 1, or f (x) = 1
1−x−x2 .
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Solving linear recurrences

Recall f (x) =
∑∞

n=0 Fnxn = 1
1−x−x2 .

Let φ = 1+
√
5

2 , 1
φ =

√
5−1
2 so that (1− x − x2) = (1− φx)(1 + x

φ).

Write in partial fractions,

1

1− x − x2
=

A

1− φx
+

B

1 + x
φ

with A + B = 1, A
φ − Bφ = 0 so that A = φ2

1+φ2 , B = 1
1+φ2 .

Matching coefficients of xn,

Fn =
φ2

1 + φ2
φn +

(−1)n

1 + φ2
φ−n.

The radius of convergence of the power series f (x) is 1
φ .
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Partial summation

Theorem (Abel summation)

Let {an}∞n=1 and {bn}∞n=1 be two sequences of complex numbers, and let

An =
n∑

k=1

ak .

Then
n∑

k=1

akbk = Anbn+1 +
n∑

k=1

Ak(bk − bk+1).
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Partial summation

Proof.

Define A0 = 0. Thus, since ak = Ak − Ak−1, k = 1, 2, ..., one has

n∑
k=1

akbk =
n∑

k=1

(Ak − Ak−1)bk

=
n∑

k=1

Akbk −
n∑

k=1

Akbk+1 + Anbn+1

= Anbn+1 +
n∑

k=1

Ak(bk − bk+1).
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Dirichlet’s test

Theorem (Dirichlet’s test)

Let {an} be a sequence of complex terms, whose partial sums form a
bounded sequence. Let {bn} be a decreasing sequence of positive real
terms, which tends to 0. Then the series

∞∑
n=1

anbn

converges.

This generalizes the alternating series test from last lecture.
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Dirichlet’s test

Proof of Dirichlet’s test.

Denote the sequence of partial sums of {an}∞n=1 by {An}∞n=1. Let M > 0
be such that |An| ≤ M for all n. By Abel summation, the sequence of
partial sums {sn =

∑n
k=1 akbk}∞n=1 satisfy

sn = Anbn+1 +
n∑

k=1

Ak(bk − bk+1).

Note that Anbn+1 → 0 as n→∞, while
∑∞

k=1 Ak(bk − bk+1) converges
absolutely, since

∞∑
k=1

|Ak(bk − bk+1)| ≤ M
∞∑
k=1

(bk − bk+1) = Mb1.

This proves the convergence.
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Examples

Let θ ∈ R. The sum
∑∞

k=1
e2πikθ

k converges if θ is not an integer and
diverges otherwise.

To see this, for θ ∈ Z, e2πikθ = 1, so this is the harmonic series,
which diverges.

Otherwise, set z = e2πiθ so |z | = 1, z 6= 1. Then
An =

∑n
k=1 e2πikθ = z−zn

1−z satisfies |An| ≤ 2
|1−z| . Hence the

convergence follows from Dirichlet’s test.
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Abel’s test

Theorem (Abel’s test)

Let
∑∞

n=1 an be a convergent complex series, and let {bn}∞n=1 be a
monotonic, convergent sequence of real terms. Then

∞∑
n=1

anbn

converges.
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Abel’s test

Proof of Abel’s test.

As in the proof of Dirichlet’s test, write An =
∑n

k=1 ak , and assume that
|An| ≤ M. Let b = limn→∞ bn. By Abel summation,

n∑
k=1

akbk = Anbn+1 +
n∑

k=1

Ak(bk − bk+1).

As n→∞, limn→∞ Anbn+1 = b
∑∞

k=1 ak converges. Also,

∞∑
k=1

|Ak(bk − bk+1)| ≤ M
∞∑
k=1

|bk − bk+1| = M|b1 − b|

since the series on the right telescopes. Thus
∑∞

k=1 Ak(bk − bk+1)
converges absolutely.
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Products of series

Definition

Let
∑∞

n=0 an and
∑∞

n=0 bn be two series. Their Cauchy product is the
series

∞∑
n=0

cn, cn = a0bn + a1bn−1 + · · ·+ anb0.
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Example

The following example shows that it is possible that
∑∞

n=1 an and∑∞
n=1 bn converge, but their Cauchy product

∑∞
n=1 cn does not converge.

Let an = bn = (−1)n√
n+1

. The series
∑∞

n=0
(−1)n√
n+1

converges by the

alternating series test.

The Cauchy product has cn = (−1)n
∑n

k=0
1√

k+1
√
n−k+1

.

By the Inequality of the Arithmetic Mean-Geometric Mean,√
(k + 1)(n − k + 1) ≤ n + 2

2
,

and hence |cn| ≥
∑n

k=0
2

n+2 = 2(n+1)
n+2 .

Since |cn| → 1 as n→∞, the series does not converge.
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Products of series

Theorem

Let
∑∞

n=0 an = A converge absolutely, and
∑∞

n=0 bn = B converge.
Denote by {cn}∞n=0 the Cauchy product of {an}∞n=0 and {bn}∞n=0. Then

∞∑
n=0

cn = AB.
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Products of series

Proof of Cauchy Product formula. See Rudin, pp. 74-75.

Define partial sums An =
∑n

k=0 an, Bn =
∑n

k=0 bk , Cn =
∑n

k=0 ck .
Set βn = Bn − B.

Write

Cn = a0b0 + (a0b1 + a1b0) + · · ·+ (a0bn + a1bn−1 + · · ·+ anb0)

= a0Bn + a1Bn−1 + · · ·+ anB0

= a0(B + βn) + a1(B + βn−1) + · · · an(B + β0)

= AnB + a0βn + a1βn−1 + · · ·+ anβ0.

Define γn = a0βn + a1βn−1 + · · ·+ anβ0.

Since AnB → AB as n→∞, it suffices to check that γn → 0.
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Products of series

Proof of Cauchy Product formula. See Rudin, pp. 74-75.

Recall that βn = Bn − B tends to 0 with n, and that we wish to show
that γn = a0βn + a1βn−1 + · · ·+ anβ0 tends to 0 also.

Define α =
∑∞

n=0 |an|.
Given ε > 0, choose N such that n > N implies |βn| < ε.

Bound

|γn| ≤
N∑

k=0

|an−kβk |+
n∑

k=N+1

|an−kβk | ≤
N∑

k=0

|an−kβk |+ εα.

Since an → 0 as n→∞, if n is sufficientlly large, then∑N
k=0 |an−kβk | < ε, whence |γn| ≤ (1 + α)ε. Letting ε ↓ 0 completes

the proof.
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