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Series of positive terms

Recall that, given a sequence {a,}2, we say that its series > 2, a,
converges if the sequence of partial sums {s,}> ;

n
Sp = E Ak,
k=1

converges. We begin by giving some criteria for the convergence in the
case when the terms a, are non-negative.
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Comparison test

Theorem (Comparison test)

Let {a,}22, and {b,}7°, be two sequences such that a, > 0 and b, > 0
for all n > 1. Suppose there is a number N and a constant ¢ > 0 such that

an < cby

for all n > N. Then convergence of >, b, implies convergence of

> me1 @

In this case, we say that the sequence b, dominates the sequence a,.
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Comparison test

Proof of the comparison test.
@ Suppose that > 77, b, converges.

@ Given ¢ > 0, apply the Cauchy property of the sequence of partial
sums of b, to choose M > N such that m > n > M implies

o |t follows that

n n
Z ap < Z cb, < e,

k=m+1 k=m+1

so the sequence of partial sums of a, is Cauchy, hence converges.
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Limit comparison test

Theorem (Limit comparison test)

Let {an}5° and {b,}7°; be sequences satisfying a, > 0 and b, > 0 for all
n > 1. Suppose that

. dnp
lim — =1.
n—oo b,

Then Y 7° | an converges if and only if Y, b, converges.

Proof.
The condition implies that there is N such that n > N implies

a
= < by < 2ap,.

2

It now follows from the comparison test that 22021 an converges if and
only if "2, b, converges. O

v
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Examples

@ Recall that last class we checked

n n+1
n=1 n=1 +

. . . . 2 .

since the series telescopes. Since limp_0o 242 = limp 001+ 1 =1,
. o) 1

it follows that ) °, =5 converges.

@ By comparison, it follows that "7 ; n5 converges for all s > 2.
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Examples

. . s co 1
@ Recall that the harmonic series satisfies >~ ; +
check that

= 00. One may

(9] 1
Z ’—n+]_0 = 00, ;SIH;Z

by noting that

—_— = ||m
n—o00o n

and

sin =
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Integral test

Theorem (Integral test)

Let f be a positive decreasing function, defined for all real x > 1. The
infinite series y > ; f(n) converges if and only if the improper integral
J1° f(x)dx converges.
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Integral test

Proof of the integral test.
@ We first check that the improper integral converges if and only if the
n oo

sequence {t, = [{" f(x)dx} ", converges.

@ Recall that convergence of the improper integral is defined by the
existence of the limit lim,_o [, f(t)dt.

@ Evidently convergence of the integral entails convergence of the
sequence as a special case.

@ To check the reverse direction, note that for n < x < n+1,
tn <[] f(t)dt < toi1, and hence, if |t, — L| < € for all n > N, then

/lx f(t)dt—Ll <€

for all x > N also.

O]

v
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Integral test

Proof of the integral test.
@ We now show that {t,}>2; converges if and only if the sequence of
partial sums {s, = >"}_; f(k)} .o, converges.
e Given m > n, note that by taking upper and lower step functions for
the integral,

[ary

m—

F(K) >t — t :/m F(t)dt > zm: £(K)

k=n k=n+1

and hence {t,}°°, is Cauchy if and only if {s,}7° is Cauchy, which
proves the claim.

O]

v
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Examples

@ We can show that the series > °°
s > 1. To check this, note that

n= ]_nsr

t_/ndt— "t s#1
S T log n s=1

This sequence converges if and only if s > 1.

@ For complex s = o + it, ns =
lexp (it log n)| = 1, the sum

e}
1
ns

(s) =

n=1

converges absolutely if o = $(s) > 1. This function is called the

Riemann zeta function.
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Examples

The study of the analytic properties of the Riemann zeta function and

related functions is responsible for a great deal of the information that we
know about the prime numbers.
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Root test

Theorem (Root test)

Let Y7, an be a series of non-negative terms. Suppose that

1
aj — R, n — oo.

If R < 1 then the series converges. If R > 1 then the series diverges.
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Root test

Proof of the root test.

Letx:%sothatR<x<1ifx<1and l<x<RiIfR>1.
Suppose R < 1. Then, for all n sufficiently large,

an, < x".

The series converges by comparison with the geometric series > 77 | x".

Suppose instead that R > 1. Then for all n sufficiently large,
anp > x"

so that the series diverges by comparison with the geometric series
S8} n
Doy X" O

n=1
v
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Example

2

n
e We apply the root test to the series Y, (#) . Calculate

n n
1 n 1 _>1
ap = =| — —.
" n+1 1+1 e

Thus the series converges.
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Ratio test

Theorem

Let >, an be a sum of positive terms such that

an+1
dn

— L, n — oo.

The series converges if L < 1 and diverges if L > 1.
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Ratio test

Proof of the ratio test.

If L > 1 then the series does not converge since the terms do not tend to 0.

If L <1, let

L+1
L<X:%<1.

Choose N sufficiently large, so that if n > N then ag—f < x. It follows
that, for all n > N,

n—1
dk41 - an
an:aNH TKHL < aux" N:—Nx”.
ak X
k=N

Since i—’,t’, is just a constant, the series converges by comparison with the
: . e
geometric series >~ ; x". O

v
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Examples

oo nl

o Consider the series > Applying the ratio test, as n — oo,

n=1nn-
ant1  (n+1) " on \" 1 . 1
an  (n+1)r1 nl o \n+1)  (1+1/n) "€

Hence the series converges.
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Edge cases

The ratio and root tests are not useful in the case % — 1 as n— oo.

Note that Y5 ; 1 = 0o while Y°7°, L converges. The ratios of
consecutive terms in these cases are given by

n 1 1 n’ 2 1
—1-10(= T —1-Z40(=).
n+1 nt <n2)’ (n+1)2 nt <n2>

The following two tests of Raabe and Gauss sometimes help to decide
convergence in cases where the limiting ratio is 1.
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Raabe’s test

Theorem (Raabe’s test)

Let >°°° | an be a sum of positive terms. If there is an r >0 and N > 1
such that, for all n > N,

a 1 r
antl . _ 2 _

an n n
then Y7, ap converges. If, for all n > N,

a"+121—1

an n

then Y72 1 ap = 0.
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An inequality for the logarithm

In the first part of the proof of Raabe's test we use the inequality
log(1 + x) < x, -1 <x.

To check this inequality, note equality holds at x = 0. Also, x — log(1 + x)
has derivative 1 — HLX which changes sign at x = 0. It follows that the

function decreases to 0, and increases thereafter.
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Raabe’s test

Proof of Raabe's test.
Assume first that "”;—:1 <1- % for n > N. Thus, for n > N,

n—1 n—1
1 1
a,,SaN”(l—r—Z)gaNexp(—E r—/i(—)
k=N k=N

There is some constant C (which depends on N) such that

Sie-

Hence, there is another constant ¢, depending on N, such that a,
for n > N. The series thus converges by comparison with 7% |

+ log n.

»Il—‘

—1 piFr-

c
S e

O

v
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Raabe’s test

Proof of Raabe's test.

Now assume that ";—:l >1-— % forn> N > 1. Thus, for n > N,
n—1 1
> —— .
an > an H <1 k)
k=N

Note that the product is equal to Z;}V % = ’,\1’__11 since it telescopes.

Since there is a constant ¢ (depending on N) such that a, > <5 for all
n > N, the series diverges by comparison with the harmonic series. [

v
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Gauss's test

Theorem (Gauss's test)

Let 220:1 a, be a series of positive terms. If there isan N> 1, ans > 1
and an M > 0 such that for all n > N,

>

f(n)

nS

dn+1
dan

n

where |f(n)| < M for all n, then Y7 | a, converges if A > 1 and diverges
ifA<1.
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Gauss's test

Proof of Gauss's test.
Let N be sufficiently large, and write, for n > N,

an:aNI[:,agtl = lj < /: (k)).

A _ f(k)

Since 7 — —= tends to 0 as kK — oo we may write
Iog( k-l-f(k))——k-i-f(k)-i-O( ) Hence

2y = ay exp (g (_T+ f/((/:) +0 (%)))

=ayexp(—Alogn+ O(1)).

The series thus converges or diverges according as A > 1 or otherwise, by
comparison with the sum O

nnA
y
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Examples

k
o Consider the series 7 <12356—(2(';)1)> . The ratio ;22 of this

sequence is given by
- (2)
2n 2n
~oo(+(-2+0(3)))
-1- S0 <%>

as n — 0o. Hence the series converges for k > 2 and diverges for
k <2 by Gauss's test.
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Power series

Definition
Let {a,}7. The series P(x) = > anx" is called the power series
associated to {a,}72,.

The series Y 72, apx" is sometimes also called a (linear) generating
function of {a,}72,. We'll return to study power series in more detail in
the next several lectures, but point out some basic properties now.
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Power series

Theorem

Let {a,}22, be a sequence. Define R =0 if{|an|%}ﬁ°:1 is unbounded,
R =00 if|a,,|% — 0, and

1 i | |1
— = lImSsu an|n
Bl

otherwise. The power series P(x) = > 2, anx" converges absolutely in
the disc Dr(0) = {x € C: |x| < R} and diverges for |x| > R.

Definition

As defined, R is called the radius of convergence of the power series
P(x) =>"02 anx".
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Power series
Proof.

e First suppose R = 0, so that |a,,|% is unbounded. It follows that for
any x # 0, \a,,x”]% = |a,,\%|x] is unbounded. The power series P(x)
diverges since its terms do not tend to 0.

@ Next suppose R = oo so that |a,,|% — 0. Then for any x € C,

]a,,x”|% = \a,,]%\x| — 0, so that the power series converges absolutely,
by comparison with a geometric series.

e Finally, suppose that R > 0 is finite. For |x| < R,

: SO 1 X
limsup |a,x"|n = limsup |a,|n|x| = Ll <L
n—oo n—oo R
The series thus converges absolutely by comparison with a geometric
series. If instead |x| > R, then the limsup is I | > 1, and the power

series does not converge since its terms do not tend to 0.

y
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Solving linear recurrences

A linear recurrence sequence is a sequence in which successive terms are
defined as a linear combination of a bounded number of terms preceeding
them (and possibly an auxiliary function). Examples include
@ The Fibonacci numbers, Fo = F =1,forn>2, F, = Fo_1 + Fn_>.
@ The number of steps needed to solve the Towers of Hanoi with n
discs, To =0, Tpp1 =2T,+1. (T,=2"-1).
@ The number of regions into which the plane is split by n lines in

general position (pairwise non-parallel), Lo =1, Lpy1 =L, +n+ 1.
(Ln=1+("3")).
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Solving linear recurrences

Although there are other methods, often the easiest way of solving linear
recurrences is through writing down the power series generating function.

o Fibonacci numbers: Let f(x) = 72, F,x". By the recurrence
relation,

f(x) = l—i-x—i-ZF,,x"
n=2

=14+x+Y (Faa+ Fo1)x"
n=2

=1+ (x + x?)f(x).

Hence f(x)(1 —x — x?) =1, or f(x) = —=

1—x—x2"
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Solving linear recurrences

Recall f(x) =Y 0% Fox" = —1
_1+V5 1

o Let p = 2 % 5

@ Write in partial fractions,

1 A N B
l-x—x2 1-¢x 1473

. 2
with A+ B =1, g‘—Bgﬁ:oSothatA:%z, B=iln.
@ Matching coefficients of x”,
2
[
1+¢?

(_1)n —n
1 ¢2¢ '

@ The radius of convergence of the power series f(x) is

¢" +

RS
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Partial summation

Theorem (Abel summation)

Let {a,}22; and {b,}5°, be two sequences of complex numbers, and let

n
A,, = Z dk.
k=1

Then
n n
Z akbk = Apbny1 + ZAk(bk — by1)-
k=1 k=1 )
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Partial summation

Proof.
Define Ag = 0. Thus, since ax = Ax — Ax_1, k =1,2,..., one has

n

n
Z axbx = Z(Ak — Ak—1)bx
k=1

k=1

n n
= Z Axby — ZAkbk-H + Anbny1
k=1 k=1

n
= Anbni1+ Y A(bi — brs1).
k=1
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Dirichlet’s test

Theorem (Dirichlet’s test)

Let {a,} be a sequence of complex terms, whose partial sums form a
bounded sequence. Let {b,} be a decreasing sequence of positive real
terms, which tends to 0. Then the series

o
E anby
n=1

converges.

This generalizes the alternating series test from last lecture.
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Dirichlet’s test

Proof of Dirichlet's test.

Denote the sequence of partial sums of {a,}°; by {A,}7°;. Let M >0
be such that |A,| < M for all n. By Abel summation, the sequence of
partial sums {s, = >"}_; akb} -, satisfy

Sn=Anbni1+ > Ac(bk — bit).
k=1

Note that A,by1 — 0 as n — oo, while > 72 ; Ax(bx — bxt1) converges
absolutely, since

Z |Ak(bk — brs1)] < MZ(bk — by41) = Mb;.
k=1 k=1

This proves the convergence.

O]

v

Bob Hough Math 141: Lecture 19 November 16, 2016 36 / 44



Examples

o Let € R. The sum > 2, & — " converges if 0 is not an integer and
diverges otherwise.

e To see this, for § € Z, e2™k? — 1, so this is the harmonic series,
which diverges.

o Otherwise, set z = e>™% so [z| =1, z# 1. Then
Ap =7, 20 = 2222 gatisfies |A,| < |1EZ|. Hence the
convergence follows from Dirichlet’s test.
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Abel’s test

Theorem (Abel's test)

Let >°°° | an be a convergent complex series, and let {b,}5°; be a
monotonic, convergent sequence of real terms. Then

o0
E anby
n=1
converges.
V.
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Abel’s test

Proof of Abel's test.

As in the proof of Dirichlet’s test, write A, = Y ,_; ax, and assume that
|An| < M. Let b =lim,_o by. By Abel summation,

Z akbx = Apbny1 + ZAk(bk — biy1).
k=1 k=1
As n — 00, limp_o0 Apbpi1 = b e g ak converges. Also,
o0 o0
D NAk(bk = bry)l < MY bk — brya| = M|by — b
k=1 k=1

since the series on the right telescopes. Thus >~ 7, Ax(bx — bk1)
converges absolutely. O
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Products of series

Definition

Let Y02 g an and > .7 b, be two series. Their Cauchy product is the
series

0o
Zcm Ch = aObn+albn—1+"'+anb0~
n=0

Bob Hough Math 141: Lecture 19 November 16, 2016 40 / 44



Example

The following example shows that it is possible that >~ ; a, and
> 021 by converge, but their Cauchy product > °, ¢, does not converge.

o Leta,=b,= E/l The series > ° \/7) converges by the
alternating series test.
— n 1
@ The CaUChy prOdUCt has Ch = (_]‘)nZk:O m
@ By the Inequality of the Arithmetic Mean-Geometric Mean,

2
ViD= k1) < =,
and hence |cp| > >0, niz 2(::21)_

@ Since |cy| — 1 as n — oo, the series does not converge.
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Products of series

Theorem

Let >"0° ,an = A converge absolutely, and Y 7" o b, = B converge.
Denote by {cn}22, the Cauchy product of {an}52, and {b,}7>,. Then

i c, = AB.
n=0
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Products of series

Proof of Cauchy Product formula. See Rudin, pp. 74-75.

o Define partial sums A, = >~} _oan, Bn=>7_obk, Co =D 4o Ck-
Set 8, = B, — B.
o Write

Cn = aobo + (aob1 + a1bo) + - - - + (aobn + a1bp—1 + -+ - + anbo)
=aoB,+ a1Bp—1+ -+ anBo
= ag(B + Bn) + a1(B + Bp-1) + - - - an(B + bo)
= ApB + aofn + a18n-1+ -+ + anfo-

o Define v, = agfBn + a18n—1 + - + anfo.
@ Since A,B — AB as n — oo, it suffices to check that v, — 0.

Bob Hough Math 141: Lecture 19 November 16, 2016 43 / 44



Products of series

Proof of Cauchy Product formula. See Rudin, pp. 74-75.

@ Recall that 8, = B, — B tends to 0 with n, and that we wish to show
that v, = a9, + a18n—1 + - - - + anfo tends to 0 also.

o Define v =77 |anl.

e Given € > 0, choose N such that n > N implies |3,| < €.

@ Bound

n

N N
Yol <D lan—iBil + D> lan—iBil < lan—iBl + e

k=0 k=N+1 k=0

@ Since a, — 0 as n — oo, if n is sufficientlly large, then
221:0 lan—kBk| < €, whence |v,| < (1 + a)e. Letting € | 0 completes
the proof.

O]

v
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