Math 141: Lecture 17 Equilibrium behavior of moving particles

Bob Hough

November 9, 2016

) Hou	

Math 141: Lecture 17

November 9, 2016 1 / 27

Recall from last class:

- Simple harmonic motion is described by the equation $y'' = -k^2 y$.
- The solutions of the equation take the form $c_1 \sin kx + c_2 \cos kx$.
- Using the trigonometric identity $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$, the general solution may be written in the form $C \sin(kx + \alpha)$ with C and α as parameters.

Force fields

A *force field* describes the force experienced by a particle as it moves through space and time.

- We'll consider force fields which are time independent. Thus the force field is a function F(x, x') which depends only upon the particle's position and possibly it's velocity.
- We assume that the particle's mass is constant. Thus Newton's second law gives $x'' = \frac{1}{m}F(x, x')$. This is a second order differential equation for position.

Gravity

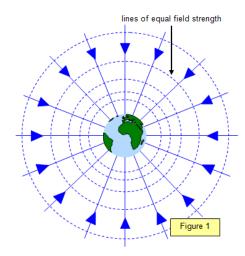
• In Newtonian mechanics, given point masses p_1 and p_2 of masses m_1 and m_2 , at distance r apart, the point masses exert a gravitational force towards each other

$$F=G\frac{m_1m_2}{r^2}.$$

G is the gravitational constant.

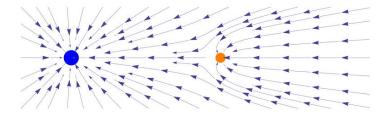
- A body with spherical symmetry of its mass behaves like an equal point mass at its center.
- In problems treating free-fall near the Earth's surface, the factor r^2 is dominated by the Earth's radius, and is typically treated as a constant, so that the gravitational force is approximated as F = gm.

Gravity



◆□ > ◆圖 > ◆臣 > ◆臣 > ─ 臣

Gravity



3

<ロ> (日) (日) (日) (日) (日)

Electromagnetism

 Charged particles p₁ and p₂ at distance r, carrying charges e₁ and e₂ (signed quantities) exert an electrostatic force towards each other of

$$F = -\epsilon \frac{e_1 e_2}{r^2}$$

where ϵ is the electrostatic constant.

- The signed quantity indicates that like-charged particles repell while opposite charges attract.
- In typical experiments with charged particles, the electrostatic force overwhelms the gravitational attraction between the particles, so that gravity is ignored.

A spring

According to Hooke's Law, a mass on the end of a coiled spring experiences a force proportional and opposite the displacement of the spring from its relaxed position.

A

В

С

A spring

Hooke's law is an example of a general phenomenon which occurs when a system is perturbed from it's natural resting state (equilibrium). This phenomenon, simple harmonic motion, mostly explains why many physical objects have a constant vibration. Do you have a tremor?

Friction of various kinds, including resistance in electric circuits, air resistance when falling, and friction when passing over a surface, is always in the direction opposite motion, and is assumed proportional to the magnitude of velocity.

Fields with friction

Bob Hough

3

<ロ> (日) (日) (日) (日) (日)

Equilibria

Definition

An equilibrium point in a force field is a point x such that F(x, 0) = 0.

At an equilibrium point x, the constant solution x(t) = x exists for all time.

3

A (10) A (10)

Types of equilibria

Definition

The equilibrium point x_0 in a force field F is *stable* if the trajectory x(t) of a unit mass particle in F satisfies the following. For every $\epsilon > 0$ there exists $\delta > 0$ such that if at time 0, $d((x(0), x'(0)) - (x_0, 0)) < \delta$, then for all t > 0, $|x(t) - x_0| < \epsilon$.

Definition

The equilibrium points x_0 is asymptotically stable if there exists $\delta > 0$ such that if at time 0, $d((x(0), x'(0)) - (x_0, 0)) < \delta$, then $\lim_{t\to\infty} x(t) = x_0$.

Definition

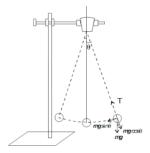
An equilibrium point which is not stable is called *unstable*.

Examples

- The field $F(x) = -k^2x$ has an equilibrium at 0. Solutions near the equilibrium generate harmonic oscillation. The solutions are stable, but not asymptotically stable.
- The field $F(x, x') = -k_1^2 x 2k_2^2 x'$ also has an equilibrium at 0. Solutions near the equilibrium exhibit damped harmonic oscillation. The equilibrium is asymptotically stable.

Pendulum

Consider a simple frictionless pendulum, which consists of a weightless rod with a mass (bob) at its end, constrained to rotate in a fixed vertical plane.



Pendulum

- The pendulum experiences a downward force of gravity, assumed constant, and the force of tension which keeps the weight on the end of the rod.
- At an angle θ from its downward vertical resting position, the tangential force on the pendulum is proportional to sin θ .
- The angular displacement satisfies the differential equation $\theta'' = -k \sin \theta$.

Pendulum

- The pendulum has two equilibrium points, in the upward and downward pointing directions, where the force vanishes.
- The upward pointing equilibrium is unstable, as a small displacement to either side causes the pendulum to accelerate downward.
- The downward pointing equilibrium is stable, but not asymptotically stable.
- Introducing friction into the rotation causes the stable equilibrium to become asymptotically stable.

To check these claims requires calculation.

Simple harmonic approximation

• Making the small angle approximation $\sin \theta \approx \theta$, one obtains the approximate differential equation of simple harmonic motion

$$\theta'' = -k^2\theta.$$

- This obtains the solutions $\theta(t) = C \sin(kt + \alpha)$, $\theta'(t) = Ck \cos(kt + \alpha)$.
- Given initial condition $(\theta(0), \theta'(0))$, C > 0 is determined by $C^2 = \theta(0)^2 + \frac{\theta'(0)^2}{k^2}$.
- The amplitude C tends to 0 as the initial conditions θ(0) and θ'(0) tend to 0.

Solution of the non-linear pendulum equation

• When the initial conditions have a small displacement from the stable equilibrium, an exact solution of the motion of the *non-linear* equation $\theta''(t) = -k^2 \sin \theta(t)$ can be given as an infinite expansion

$$heta(t) = C\left(\sin(ilde{k}(t+t_0)) + \epsilon_3\sin(3 ilde{k}(t+t_0)) + \epsilon_5\sin(5 ilde{k}(t+t_0)) + ...
ight)$$

where
$$k = \tilde{k} \left(1 + \frac{1}{4} \left(\sin^2 \frac{\theta_m}{2} + \frac{3^2}{4^2} \sin^4 \frac{\theta_m}{2} + ... \right) \right)$$
 and where θ_m is the maximum displacement.

- We won't treat infinite series of functions until later in the course, so we'll postpone the derivation of this result for now.
- Note that $\theta(t)$ is periodic with period $\frac{2\pi}{\tilde{k}}$, and thus the stable equilibrium is not asymptotically stable.

Behaviors near equilibria in a constant force field

Theorem

Suppose a force field F(x) is twice continuously differentiable as a function of x. Let x be an equilibrium point of F.

- If F'(x) > 0 then the equilibrium is unstable.
- If F'(x) < 0 then the equilibrium is stable.

Behaviors near equilibria in a constant force field

Proof.

- The proof of the stability citerion is a little involved, but is covered in a rigorous course treating ODE's.
- To prove the instability criterion, assume without loss of generality that x = 0, and Taylor expand F to obtain that in a neighborhood of 0, F(y) = F'(0)y + O(y²).
- Thus there is a $\delta > 0$, such that if $0 \le y \le \delta$, $F(y) > \frac{F'(0)}{2}y$.
- Let 0 < x₀ < δ and let x(t) be the trajectory of a particle started from rest at x(0) = x₀ in the field F.
- Let $\tilde{x}(t)$ be the trajectory of a particle started from rest at $x(0) = \frac{x_0}{2}$ in the field $\tilde{F}(y) = \frac{F'(0)}{2}y$.

(日) (周) (三) (三)

Behaviors near equilibria in a constant force field

Proof.

- We claim that, for all t such that $0 \le x(t) \le \delta$, $x(t) > \tilde{x}(t)$.
- Suppose otherwise, and let $t_0 > 0$ be

$$t_0 = \inf\{t > 0 : x(t) < \delta \text{ and } x(t) < \tilde{x}(t)\}.$$

For all $0 < t < t_0$, $x(t) > \tilde{x}(t)$, whence $x''(t) > \tilde{x}''(t)$ and thus, for $0 < t < t_0$, x'(t) > x(t). It follows from the Mean Value Theorem that $x(t_0) > \tilde{x}(t_0)$. By continuity, $x(t) > \tilde{x}(t)$ in a neighborhood of t_0 , a contradiction.

- The equation $\tilde{x}(t)$ has solution $\frac{x_0}{4} \left(e^{t\sqrt{F'(0)/2}} + e^{-t\sqrt{F'(0)/2}} \right)$, which tends to ∞ with increasing t.
- Since $\tilde{x}(t) \geq \delta$ eventually, $x(t) \geq \delta$ eventually.

- 3

イロト イポト イヨト イヨト

Consider two fixed positive charges on the x axis, say at x = 1 and x = -1, and a third particle with charge ϵ constrained to move along the y axis. At position y, the particle experiences a vertical force of magnitude proportional to $\frac{\epsilon y}{(1+y^2)^{\frac{3}{2}}}$. The point y = 0 is an equilibrium. It is stable if the particle is negatively charged, and unstable if positively charged.

Driven harmonic motion occurs when an external periodic force is introduced which ordinarily exhibits harmonic motion. Examples include

- A bridge that oscillates under marching soldiers.
- A tuning fork that vibrates when introduced to a sound wave.
- A child who drives a swing by pumping his legs.

Driven harmonic motion

Recall that the damped harmonic oscillation equation

$$x'' + 2ax' + b^2x = 0$$

has solutions in 0 < a < b given by $(d^2 = b^2 - a^2)$ given by

$$x(t) = Ce^{-at}\sin(dt + \alpha),$$

where C and α are parameters. These solutions vanish in the large time limit.

Driven harmonic motion

The equation of driven harmonic motion is

$$x'' + 2ax' + b^2x = A\cos(\omega t).$$

One guesses a particular solution of shape $B\sin(\omega t + \delta)$, since derivatives are phases of the same frequency, and adding them is a translation in time and dilation in amplitude. One can check that a solution is given by

$$\begin{aligned} x(t) &= \frac{A}{G}\sin(\omega t + \delta), \\ G &= \sqrt{(\omega^2 - b^2)^2 + 4a^2\omega^2} \\ \delta &= \cos^{-1}\frac{2a\omega}{G}. \end{aligned}$$

Driven harmonic motion

Recall

$$egin{aligned} \mathsf{x}(t) &= rac{A}{G}\sin(\omega t + \delta), \ & \mathcal{G} &= \sqrt{(\omega^2 - b^2)^2 + 4a^2\omega^2} \end{aligned}$$

- Note that as ω → b and a → 0, G → 0 so the amplitude tends to infinity. This phenomenon is called 'resonance'.
- The choice of ω which minimizes G is called the 'resonant frequency' of the system. Resonance must be considered when doing failure analysis of physical systems.