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Simple harmonic motion

Recall from last class:

Simple harmonic motion is described by the equation y ′′ = −k2y .

The solutions of the equation take the form c1 sin kx + c2 cos kx .

Using the trigonometric identity sin(α+ β) = sinα cosβ + cosα sinβ,
the general solution may be written in the form C sin(kx + α) with C
and α as parameters.
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Force fields

A force field describes the force experienced by a particle as it moves
through space and time.

We’ll consider force fields which are time independent. Thus the force
field is a function F (x , x ′) which depends only upon the particle’s
position and possibly it’s velocity.

We assume that the particle’s mass is constant. Thus Newton’s
second law gives x ′′ = 1

mF (x , x ′). This is a second order differential
equation for position.
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Gravity

In Newtonian mechanics, given point masses p1 and p2 of masses m1

and m2, at distance r apart, the point masses exert a gravitational
force towards each other

F = G
m1m2

r2
.

G is the gravitational constant.

A body with spherical symmetry of its mass behaves like an equal
point mass at its center.

In problems treating free-fall near the Earth’s surface, the factor r2 is
dominated by the Earth’s radius, and is typically treated as a
constant, so that the gravitational force is approximated as F = gm.
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Gravity
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Gravity

Bob Hough Math 141: Lecture 17 November 9, 2016 6 / 27



Electromagnetism

Charged particles p1 and p2 at distance r , carrying charges e1 and e2
(signed quantities) exert an electrostatic force towards each other of

F = −εe1e2
r2

where ε is the electrostatic constant.

The signed quantity indicates that like-charged particles repell while
opposite charges attract.

In typical experiments with charged particles, the electrostatic force
overwhelms the gravitational attraction between the particles, so that
gravity is ignored.
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A spring

According to Hooke’s Law, a mass on the end of a coiled spring
experiences a force proportional and opposite the displacement of the
spring from its relaxed position.
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A spring

Hooke’s law is an example of a general phenomenon which occurs when a
system is perturbed from it’s natural resting state (equilibrium). This
phenomenon, simple harmonic motion, mostly explains why many physical
objects have a constant vibration. Do you have a tremor?
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Fields with friction

Friction of various kinds, including resistance in electric circuits, air
resistance when falling, and friction when passing over a surface, is always
in the direction opposite motion, and is assumed proportional to the
magnitude of velocity.
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Fields with friction
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Equilibria

Definition

An equilibrium point in a force field is a point x such that F (x , 0) = 0.

At an equilibrium point x , the constant solution x(t) = x exists for all
time.
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Types of equilibria

Definition

The equilibrium point x0 in a force field F is stable if the trajectory x(t) of
a unit mass particle in F satisfies the following. For every ε > 0 there
exists δ > 0 such that if at time 0, d((x(0), x ′(0))− (x0, 0)) < δ, then for
all t > 0, |x(t)− x0| < ε.

Definition

The equilibrium points x0 is asymptotically stable if there exists δ > 0 such
that if at time 0, d((x(0), x ′(0))− (x0, 0)) < δ, then limt→∞ x(t) = x0.

Definition

An equilibrium point which is not stable is called unstable.
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Examples

The field F (x) = −k2x has an equilibrium at 0. Solutions near the
equilibrium generate harmonic oscillation. The solutions are stable,
but not asymptotically stable.

The field F (x , x ′) = −k2
1x − 2k2

2x ′ also has an equilibrium at 0.
Solutions near the equilibrium exhibit damped harmonic oscillation.
The equilibrium is asymptotically stable.
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Pendulum

Consider a simple frictionless pendulum, which consists of a weightless rod
with a mass (bob) at its end, constrained to rotate in a fixed vertical plane.
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Pendulum

The pendulum experiences a downward force of gravity, assumed
constant, and the force of tension which keeps the weight on the end
of the rod.

At an angle θ from its downward vertical resting position, the
tangential force on the pendulum is proportional to sin θ.

The angular displacement satisfies the differential equation
θ′′ = −k sin θ.
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Pendulum

The pendulum has two equilibrium points, in the upward and
downward pointing directions, where the force vanishes.

The upward pointing equilibrium is unstable, as a small displacement
to either side causes the pendulum to accelerate downward.

The downward pointing equilibrium is stable, but not asymptotically
stable.

Introducing friction into the rotation causes the stable equilibrium to
become asymptotically stable.

To check these claims requires calculation.
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Simple harmonic approximation

Making the small angle approximation sin θ ≈ θ, one obtains the
approximate differential equation of simple harmonic motion

θ′′ = −k2θ.

This obtains the solutions θ(t) = C sin(kt + α),
θ′(t) = Ck cos(kt + α).

Given initial condition (θ(0), θ′(0)), C > 0 is determined by

C 2 = θ(0)2 + θ′(0)2

k2 .

The amplitude C tends to 0 as the initial conditions θ(0) and θ′(0)
tend to 0.
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Solution of the non-linear pendulum equation

When the initial conditions have a small displacement from the stable
equilibrium, an exact solution of the motion of the non-linear
equation θ′′(t) = −k2 sin θ(t) can be given as an infinite expansion

θ(t) = C
(

sin(k̃(t + t0)) + ε3 sin(3k̃(t + t0)) + ε5 sin(5k̃(t + t0)) + ...
)

where k = k̃
(

1 + 1
4

(
sin2 θm

2 + 32

42
sin4 θm

2 + ...
))

and where θm is the

maximum displacement.

We won’t treat infinite series of functions until later in the course, so
we’ll postpone the derivation of this result for now.

Note that θ(t) is periodic with period 2π
k̃

, and thus the stable
equilibrium is not asymptotically stable.
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Behaviors near equilibria in a constant force field

Theorem

Suppose a force field F (x) is twice continuously differentiable as a function
of x. Let x be an equilibrium point of F .

If F ′(x) > 0 then the equilibrium is unstable.

If F ′(x) < 0 then the equilibrium is stable.
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Behaviors near equilibria in a constant force field

Proof.

The proof of the stability citerion is a little involved, but is covered in
a rigorous course treating ODE’s.

To prove the instability criterion, assume without loss of generality
that x = 0, and Taylor expand F to obtain that in a neighborhood of
0, F (y) = F ′(0)y + O(y2).

Thus there is a δ > 0, such that if 0 ≤ y ≤ δ, F (y) > F ′(0)
2 y .

Let 0 < x0 < δ and let x(t) be the trajectory of a particle started
from rest at x(0) = x0 in the field F .

Let x̃(t) be the trajectory of a particle started from rest at x(0) = x0
2

in the field F̃ (y) = F ′(0)
2 y .
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Behaviors near equilibria in a constant force field

Proof.

We claim that, for all t such that 0 ≤ x(t) ≤ δ, x(t) > x̃(t).

Suppose otherwise, and let t0 > 0 be

t0 = inf{t > 0 : x(t) < δ and x(t) < x̃(t)}.

For all 0 < t < t0, x(t) > x̃(t), whence x ′′(t) > x̃ ′′(t) and thus, for
0 < t < t0, x ′(t) > x(t). It follows from the Mean Value Theorem
that x(t0) > x̃(t0). By continuity, x(t) > x̃(t) in a neighborhood of
t0, a contradiction.

The equation x̃(t) has solution x0
4

(
et
√

F ′(0)/2 + e−t
√

F ′(0)/2
)
, which

tends to ∞ with increasing t.

Since x̃(t) ≥ δ eventually, x(t) ≥ δ eventually.
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Two fixed charges

Consider two fixed positive charges on the x axis, say at x = 1 and
x = −1, and a third particle with charge ε constrained to move along the
y axis. At position y , the particle experiences a vertical force of magnitude
proportional to εy

(1+y2)
3
2

. The point y = 0 is an equilibrium. It is stable if

the particle is negatively charged, and unstable if positively charged.
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Driven harmonic motion

Driven harmonic motion occurs when an external periodic force is
introduced which ordinarily exhibits harmonic motion. Examples include

A bridge that oscillates under marching soldiers.

A tuning fork that vibrates when introduced to a sound wave.

A child who drives a swing by pumping his legs.
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Driven harmonic motion

Recall that the damped harmonic oscillation equation

x ′′ + 2ax ′ + b2x = 0

has solutions in 0 < a < b given by (d2 = b2 − a2) given by

x(t) = Ce−at sin(dt + α),

where C and α are parameters. These solutions vanish in the large time
limit.
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Driven harmonic motion

The equation of driven harmonic motion is

x ′′ + 2ax ′ + b2x = A cos(ωt).

One guesses a particular solution of shape B sin(ωt + δ), since derivatives
are phases of the same frequency, and adding them is a translation in time
and dilation in amplitude. One can check that a solution is given by

x(t) =
A

G
sin(ωt + δ),

G =
√

(ω2 − b2)2 + 4a2ω2

δ = cos−1
2aω

G
.
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Driven harmonic motion

Recall

x(t) =
A

G
sin(ωt + δ),

G =
√

(ω2 − b2)2 + 4a2ω2

Note that as ω → b and a→ 0, G → 0 so the amplitude tends to
infinity. This phenomenon is called ‘resonance’.

The choice of ω which minimizes G is called the ‘resonant frequency’
of the system. Resonance must be considered when doing failure
analysis of physical systems.
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