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Stirling’s approximation

Theorem

For integer n ≥ 1, as n→∞

log n! =

(
n +

1

2

)
log n − n +

1

2
log 2π + O(1/n).
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Stirling’s approximation

Proof.

By the additive property of the logarithm, log n! =
∑n

j=1 log j . Denote [x ]

the integer nearest to x , that is, [x ] = n if x ∈
(
n − 1

2 , n + 1
2

]
. Thus

log n! =

∫ n+ 1
2

1
2

log[x ]dx

=

∫ n+ 1
2

1
2

log xdx +

∫ n+ 1
2

1
2

(log[x ]− log x)dx

Write log[x ]− log x = − log x
[x] = − log

(
1 + x−[x]

[x]

)
to obtain

(
n +

1

2

)
log

(
n +

1

2

)
− 1

2
log

1

2
− n −

∫ n+ 1
2

1
2

log

(
1 +

x − [x ]

[x ]

)
dx .
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Stirling’s approximation

Proof.

Recall

log n! =

(
n +

1

2

)
log

(
n +

1

2

)
− 1

2
log

1

2
− n

−
∫ n+ 1

2

1
2

log

(
1 +

x − [x ]

[x ]

)
dx .

Write

log

(
n +

1

2

)
= log n + log

(
1 +

1

2n

)
= log n +

1

2n
+ O

(
1/n2

)
.

Thus the first line is
(
n + 1

2

)
log n − n + 1

2 log 2 + 1
2 .
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Stirling’s approximation

Proof.

Write the integral as∫ n+ 1
2

1
2

log

(
1 +

x − [x ]

[x ]

)
dx =

n∑
j=1

∫ 1
2

− 1
2

log

(
1 +

x

j

)
dx

=
1

2

n∑
j=1

∫ 1
2

− 1
2

log

(
1− x2

j2

)
dx .

The integral is O
(

1
j2

)
. Hence∫ ∞

n+ 1
2

log

(
1 +

x − [x ]

[x ]

)
dx = O

(∫ ∞
n

dx

x2

)
= O(1/n).

The integral is thus
∫∞

1
2

log
(

1 + x−[x]
[x]

)
dx + O(1/n).
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Stirling’s approximation
The previous slides prove log n! =

(
n + 1

2

)
log n − n + C + O(1/n) for

some undetermined constant C .

Theorem

We have

lim
n→∞

√
n
(2n
n

)
22n

=

√
1

π
.

To deduce the value of C from this theorem, note that

log

(
2n

n

)
= log(2n)!− 2 log n!

=

(
2n +

1

2

)
log 2n − (2n + 1) log n − C + O(1/n)

=

(
2n +

1

2

)
log 2− 1

2
log n − C + O(1/n)

Letting n→∞ obtains C − 1
2 log 2 = 1

2 log π.
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Stirling’s approximation

Lemma

For each n ≥ 1 we have

n!n!

(2n + 1)!
=

1

(2n + 1)
(2n
n

) =

∫ 1

0
xn(1− x)ndx .

Proof.

Drop 2n + 1 points in the unit interval [0, 1] uniformly, independently
at random. We claim that both sides of the equation give the
probability of the event that the first n points dropped lie to the left
of the (n + 1)st point, and the last n points dropped lie to the right
of the (n + 1)st point.
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Stirling’s approximation

Proof.

There are (2n + 1)! orderings with which the points can appear, each
of which is equally likely. There are n! orderings of the first n points,
n! orderings of the last n, so (n!)2 orderings which are permissible.

This gives a probability of (n!)2

(2n+1)! .

When the (n + 1)st point is at position x , the chance that the first n
points lie to the left of it is xn, with the last n to the right, (1− x)n.
Thus the ordering has chance xn(1− x)n. Averaging over all possible
x , the probability is ∫ 1

0
xn(1− x)ndx .
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Stirling’s approximation

Proof sketch of limit.

Make a change of variables to write∫ 1

0
xn(1− x)ndx =

∫ 1
2

− 1
2

(
x +

1

2

)n (1

2
− x

)n

dx

=

∫ 1
2

− 1
2

(
1

4
− x2

)n

dx

=
1

22n

∫ 1
2

− 1
2

exp
(
n log(1− 4x2)

)
dx

=
1

22n
√

n

∫ √
n
2

−
√
n
2

exp

(
n log

(
1− 4x2

n

))
dx .
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Stirling’s approximation

Proof sketch of limit.

The integral is well approximated by replacing log(1− 4x2

n ) with −4x2

n and
then extending to (−∞,∞) (this is a little technical) which gives

22n
√

n

∫ 1

0
xn(1− x)ndx =

∫ ∞
−∞

exp(−4x2)dx + o(1)

=
1√
8

∫ ∞
−∞

e−
x2

2 dx + o(1) =

√
π

2
+ o(1).

It follows that

lim
n→∞

22n
√

n
(n!)2

(2n + 1)!
=

√
π

2

and thus

lim
n→∞

√
n
(2n
n

)
22n

= lim
n→∞

2√
π

n

2n + 1
=

1√
π
.
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Calculating π
Various methods of calculating the decimal expansion of π use the Taylor
series of arctan x at small angles x .

Theorem

If 0 ≤ x ≤ 1 then for each n ≥ 1,

arctan x = x − x3

3
+

x5

5
− ...+ (−1)n−1

x2n−1

2n − 1
+ En(x)

with |En(x)| ≤ x2n+1

2n+1 .

Proof.

Write 1
1+x2

= 1− x2 + x4 − ...+ (−1)n−1x2n−2 + (−1)nx2n
1+x2

. Integrating,

|En(x)| =

∫ x

0

u2n

1 + u2
du ≤

∫ x

0
u2ndu =

x2n+1

2n + 1
.
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Calculating π

Theorem (John Machin (1680-1751))

π = 16 arctan 1
5 − 4 arctan 1

239 .

Proof.

Let α = arctan 1
5 and β = 4α− π

4 . Thus π = 16α− 4β, so it suffices to
check that tanβ = 1

239 . The trig identity

tan(A + B) =
tan A + tan B

1− tan A tan B

gives tan 2α = 5
12 , tan 4α = 120

119 and tan
(
4α− π

4

)
= 1

239 .

Calculating π using this expansion gives at least a factor 25 improvement
with each additional term in the Taylor expansion. One obtains a number
of bits linear in the number of terms in the Taylor expansion.
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Newton’s method

Newton’s method gives a method of numerically approximating a root of a
differentiable curve.
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Newton’s method

Newton’s method approximates a root f (r) = 0 of a differentiable
function f by making a series of guesses.

Given an initial point x0, each successive point xn+1 after xn is found
by making a linear approximation to f (x) through the point
(xn, f (xn)),

`n(x) = f (xn) + (x − xn)f ′(xn).

If f ′(xn) 6= 0, xn+1 = xn − f (xn)
f ′(xn)

is the root of the linear
approximation to f through xn.
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Newton’s method

Theorem

Let f be twice continuously differentiable on an interval [a, b] and assume
f (c) = 0 for some a < c < b. Suppose that f ′(c) 6= 0. Then there exists
δ > 0 with δ < min(c − a, b − c) and M > 0 such that, for any
x0 ∈ (c − δ, c + δ) the sequence {xn}∞n=0 defined recursively by

xn+1 = xn −
f (xn)

f ′(xn)

satisfies, for all n ≥ 0, |xn+1 − c | ≤ M|xn − c |2.
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Newton’s method

We say that the rate of convergence in Newton’s method is quadratic,
which means that the number of significant figures in an
approximation essentially doubles on each iteration. In particular, the
number of determined bits is exponential in the number of iterations.
This makes Newton’s method preferrable to Taylor expansion.

The extremely fast convergence of Newton’s method makes it a
favorite algorithm in numerical analysis.
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Newton’s method

Proof.

Let δ > 0 be such that |x − c | < δ implies |f ′(x)| > |f ′(c)|
2 .

Let m = maxx∈[c−δ,c+δ] |f ′′(x)|.
Suppose xn ∈ (c − δ, c + δ). Write

xn+1 − c = xn − c − f (xn)

f ′(xn)
.
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Newton’s method

Proof.

Recall xn+1 − c = xn − c − f (xn)
f ′(xn)

.

Taylor expand f (xn) = 0 + f ′(c)(xn − c) +
∫ xn
c (xn − t)f ′′(t)dt. Hence

xn+1 − c = (xn − c)

(
1− f ′(c)

f ′(xn)

)
+ ε1

where ε1 = 1
f ′(xn)

∫ xn
c (xn − t)f ′′(t)dt satisfies |ε1| ≤ M

|f ′(c)|(xn − c)2.

By the Mean Value Theorem∣∣∣∣1− f ′(c)

f ′(xn)

∣∣∣∣ =

∣∣∣∣ f ′(xn)− f ′(c)

f ′(xn)

∣∣∣∣ ≤ m|xn − c |
|f ′(xn)|

≤ 2m|xn − c |
|f ′(c)|

.
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Newton’s method

Proof.

It follows that, under the assumption that xn ∈ (c − δ, c + δ),

|xn+1 − c | ≤ M|xn − c |2, M =
3m

|f ′(c)|
.

Decrease δ sufficiently so that Mδ2 < δ, or M < 1
δ . Then

xn ∈ (c − δ, c + δ) implies xn+1 ∈ (c − δ, c + δ) so
{xn}∞n=0 ⊂ (c − δ, c + δ).

Thus, for all n, |xn+1 − c | ≤ M|xn − c|2 holds.

Bob Hough Math 141: Lecture 15 October 26, 2016 19 / 23



Newton’s method example

We approximate
√

2 by applying Newton’s method to the equation
f (x) = x2 − 2 = 0 with initial guess x0 = 1.

Note that f ′(x) = 2x and hence xn+1 = xn − x2n−2
2xn

= xn
2 + 1

xn
.

Hence x1 = 1.5, x2 = 1.416, x3 = 1.4142156862(7),
x4 = 1.4142135623(7).

We have
√

2 = 1.41421356237... so 4 iterations give this precision.
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Newton’s method divergence

Suppose one attempts to find the root x = 0 of f (x) = x
1
3 by Newton’s

method. Note that f is not differentiable at 0.

For x 6= 0, f ′(x) = 1
3x−

2
3 .

Hence, given a guess x0 6= 0,

x1 = x0 −
x

1
3
0

1
3x
− 2

3
0

= −2x0.

Thus the sequence of guesses diverges exponentially away from the
root.
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Newton’s method oscillation

The polynomial P(x) = (x − 1)2(x + 1) + x2(2− x) + x4(x − 1)3

satisfies P(0) = P(1) = 1 and P ′(0) = −1, P ′(1) = 1.

Hence, started from an initial guess of either 0 or 1, the guesses
oscillate between 0 and 1.
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Polynomial equations on C

Newton’s method may be applied to find the roots of complex functions
also. The following figure is colored according to the root of x5 − 1 which
an initial guess converges.
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