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Taylor expansion of composites

Problem

Give the first six terms in the Taylor expansion of sin(cos x) about x = 0.

Solution

Since cos 0 = 1, Taylor expand sin about 1 to find

sin(1 + u) = sin 1 + u cos 1− u2

2
sin 1− u3

6
cos 1 + O(u4).

Set u = − x2

2! + x4

4! −
x6

6! + O(x8). Hence

sin(cos x) = sin 1 +

(
−x2

2!
+

x4

4!
− x6

6!

)
cos 1

−

(
− x2

2! + x4

4!

)2
2

sin 1 +
x6

48
cos 1 + O(x8).
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Taylor expansion of composites

Problem

Give the first four terms in the Taylor expansion of esin x about x = 0.

Solution

Use eu = 1 + u + u2

2! + u3

3! + u4

4! + O(u5) with u = x − x3

3 + O(x5) to obtain

esin x = 1 +

(
x − x3

3!

)
+

1

2!

(
x − x3

3!

)2

+
x3

3!
+

x4

4!
+ O(x5).
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Exponential limits

Problem

Prove limx→0+ xx = 1.

Solution

By continuity of the exponential function at 0,

lim
x→0+

xx = exp

(
lim

x→0+
x log x

)
.

Write x log x = log x
1
x

and apply l’Hôpital’s Rule to conclude this limit is 0.

Thus
lim

x→0+
xx = 1.
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Exponential limits

Theorem

The function

f (x) =

{
e−

1
x2 x 6= 0

0 x = 0

is infinitely differentiable and has all derivatives at 0 equal to 0.

Proof.

We check that there is a polynomial Pn such that

f (n)(x) =

{
Pn

(
1
x

)
e−

1
x2 x 6= 0

0 x = 0
.

This is true if n = 0. If it holds for some n ≥ 0, then for x 6= 0,
differentiating with the product rule gives

f (n+1)(x) =

(
−P ′n

(
1
x

)
1
x2

+
2Pn( 1

x )
x3

)
e−

1
x2 , as required.
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Exponential limits

Proof.

To check that f (n+1)(0) = 0 write

lim
x→0

Pn

(
1
x

)
x

e−
1
x2 .

Substitute x 7→ 1
x and note that

lim
x→∞

xPn(x)e−x
2

= 0, lim
x→−∞

xPn(x)e−x
2

= 0

to evaluate the right and left limits at 0.
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Trig substitution

The substitution u = tan x
2 permits integration of rational functions in sin

and cos.

Problem

Integrate
∫

dx
sin x+cos x .

Solution

Substitute u = tan x
2 to obtain

x = 2 arctan u, dx =
2du

1 + u2
,

sin x = 2 sin
x

2
cos

x

2
=

2 tan x
2

sec2 x
2

=
2u

1 + u2
,

cos x = 2 cos2
x

2
− 1 =

2

sec2 x
2

− 1 =
2

1 + u2
− 1 =

1− u2

1 + u2
.
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Trig substitution

Solution

Write sin x + cos x = 2u+1−u2
1+u2

to write∫
dx

sin x + cos x
= −2

∫
du

u2 − 2u − 1

= −2

∫
du

(u − 1−
√

2)(u − 1 +
√

2)

=
1√
2

log

∣∣∣∣∣u − 1 +
√

2

u − 1−
√

2

∣∣∣∣∣+ C

=
1√
2

log

∣∣∣∣∣ tan x
2 − 1 +

√
2

tan x
2 − 1−

√
2

∣∣∣∣∣+ C .
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Improper integrals

Definition

The infinite integral is defined by a limit, if it exists,∫ ∞
a

f (x)dx = lim
b→+∞

∫ b

a
f (x)dx ,

and ∫ a

−∞
f (x)dx = lim

b→−∞

∫ a

b
f (x)dx .

Define, for any c ∈ R,∫ ∞
−∞

f (x)dx =

∫ c

−∞
f (x)dx +

∫ ∞
c

f (x)dx .

If an infinite integral exists, it is said to be convergent.
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Examples

∫ 1
0 x s−1dx converges for s > 0 and diverges for s ≤ 0, since∫ 1

b
x s−1dx =

{
1−bs
s s 6= 0,

− log b s = 0
.

∫∞
0 sin xdx does not converge, since∫ b

0
sin xdx = 1− cos b

varies between 0 and 2 for arbitrarily large b.∫∞
0 e−xdx = 1 since

∫ a
0 e−xdx = 1− e−a for a > 0.

Bob Hough Math 141: Lecture 14 October 24, 2016 10 / 38



Improper integrals of a second kind

Definition

Suppose that f is bounded and integrable on subintervals [x , b] of [a, b]. If
f is unbounded on [a, b], it’s improper integral, if it exists, is∫ b

a
f (x)dx = lim

x↓a

∫ b

x
f (x)dx .
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The Gamma function

Definition

Let s > 0. The Gamma function Γ(s) is defined by the improper integral

Γ(s) =

∫ ∞
0

e−xx s−1dx .
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The Gamma function

When 0 < s < 1 the above integral is improper at both endpoints,
and is defined by

Γ(s) =

∫ 1

0
e−xx s−1dx +

∫ ∞
1

e−xx s−1dx .

To check that the first integral converges, note that
∫ 1
a e−xx s−1dx is

continuous and decreasing as a function of a and bounded above by
1
s =

∫ 1
0 x s−1dx , hence has a limit equal to its supremum at a = 0.
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The Gamma function

To check that the second integral converges, note that∫ a

1
e−xx s−1dx =

(
1

e
− as−1e−a

)
+ (s − 1)

∫ a

1
e−xx s−2dx

is an increasing function of a. If 0 < s ≤ 1 the integral is bounded by∫∞
1 e−xdx = 1

e . Since it is increasing and bounded above, it
converges to its supremum, see HW9. To check that the integral
converges for all s, use the integration by parts formula to replace s
with s − 1; apply induction.
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Properties Gamma function

Theorem

The Γ function satisfies the following properties.

1 Γ(1) = 1

2 For s ≥ 0, sΓ(s) = Γ(s + 1). In particular, for integers n ≥ 1,
Γ(n) = (n − 1)!.

3 Γ
(
1
2

)
=
√
π.

Proof.

Γ(1) =
∫∞
0 e−xdx = 1. To prove the second relation, integrate by parts in∫ b

a
e−xx s−1dx = as−1e−a − bs−1e−b + (s − 1)

∫ b

a
e−xx s−2dx .

Taking the limit, first as b →∞, then as a→ 0, the evaluation terms
both vanish, leaving Γ(s) = (s − 1)Γ(s − 1).
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Properties Gamma function

Proof.

We give a ‘proof sketch’ of the last relation, since the easiest proof uses
multiple integrals, which we don’t treat in this course. Substitute u =

√
x ,

2du = dx√
x

to write

Γ

(
1

2

)
=

∫ ∞
0

e−x
dx√

x

= 2

∫ ∞
0

e−u
2
du =

∫ ∞
−∞

e−u
2
du.

Thus Γ
(
1
2

)2
=
∫
x ,y∈R2 e−x

2−y2
dxdy . Note that this requires justification

that the two integrals over x and y can be merged into 1, which we don’t
cover in this course.

Bob Hough Math 141: Lecture 14 October 24, 2016 16 / 38



Properties Gamma function

Proof.

Change to polar coordinates (r , θ) where r2 = x2 + y2 and
θ = arctan(y/x). The function is independent of θ, hence is constant on
concentric circles about the origin. The area of the circular rim between r
and r + δ is 2πrδ + O(δ2), and hence the integral has value

Γ

(
1

2

)2

= 2π

∫ ∞
0

e−r
2
rdr = π

∫ ∞
0

e−xdx = π.
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The Gaussian

The function G (x) = e−
x2

2√
2π

is the density function of a ‘Gaussian’ or

‘normal’ distribution (the ‘bell curve’). It is ubiquitous in statistics and
mathematical analysis. By the previous theorem,

1√
2π

∫ ∞
−∞

e−
x2

2 dx = 1.

The numbers M(n) = 1√
2π

∫∞
−∞ xne−

x2

2 dx are called the moments of the

Gaussian. For odd n these vanish since the integrand is odd (pair x and
−x). Set m(n) = M(2n) for the even moments.
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Moments of the Gaussian

The even moments of the Gaussian are given by

m(n) =
1√
2π

∫ ∞
−∞

x2ne−
x2

2 dx =

√
2

π

∫ ∞
0

x2ne
−x2

2 dx .

Substitute u = x2

2 , du = xdx to find

m(n) =
2n√
π

∫ ∞
0

un− 1
2 e−udu

= 2n
Γ
(
n + 1

2

)
Γ
(
1
2

)
= 2n

1

2

3

2
...

(
n − 1

2

)
= 1 · 3 · ... · (2n − 1).
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Gauss
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Gaussian
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Change of variance
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Fitting the bell curve
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Multi-dimensional Gaussian
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The sup distance on continuous functions

Definition

Let I be an interval, and let f be a bounded function on I . The sup norm
of f is

‖f ‖∞ = sup
x∈I
|f (x)|.

A sequence of bounded functions {fn}∞n=0 converges uniformly to a
bounded function f if

lim
n→∞

‖f − fn‖∞ = 0.
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The sup distance on continuous functions

Theorem

Let {fn}∞n=0 be a sequence of continuous functions on [a, b] converging
uniformly to f . Then f is continuous.

Remark: we say that the set of continuous functions on [a, b] is closed
under uniform convergence.

Proof.

Given ε > 0 choose N sufficiently large so that n > N implies
‖f − fn‖∞ < ε

3 . Pick any n > N, and let δ > 0 be such that |y − x | < δ
implies |fn(y)− fn(x)| < ε

3 . Then, by the triangle inequality,

|f (y)− f (x)| ≤ |f (y)− fn(y)|+ |fn(y)− fn(x)|+ |fn(x)− f (x)| < ε.

This proves that f is uniformly continuous on [a, b].
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Pointwise convergence

Definition

Let {fn}∞n=0 be a sequence of functions on an interval I , and let f be a
function on I . The sequence {fn}∞n=0 converges pointwise to f if, for each
x ∈ I ,

lim
n→∞

fn(x) = f (x).
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Example of pointwise convergence

Let {fn(x) = xn} be functions on [0, 1], and let f (x) = 0 if 0 ≤ x < 1 and
f (1) = 1, otherwise.

Then fn converges to f pointwise, since for all n, 1n = 1, 0n = 0,
while for all 0 < x < 1, xn = exp(n log x) tends to 0 as n→∞, since
log x < 0.

fn does not tend to f uniformly, and in fact, ‖fn − f ‖∞ = 1 for all n,
since fn(x)→ 1 as x → 1 for each n.
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The Weierstrass Approximation Theorem

Theorem (Weierstrass Approximation Theorem)

Let f be a continuous function on [−1, 1]. There exists a sequence of
polynomials {Pn}∞n=0 converging uniformly to f on [−1, 1].
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The Weierstrass Approximation Theorem Illustration
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The Weierstrass Approximation Theorem Illustration
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The Weierstrass Approximation Theorem Illustration
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The Weierstrass Approximation Theorem

Proof.

Let Qn(x) = cn(1− x2)n where cn is a constant such that∫ 1
−1 Qn(x)dx = 1. These polynomials satisfy

1 Qn ≥ 0

2 For each δ > 0, limn→∞
∫
δ<|x |≤1 Qn(x)dx = 0.

To prove the second item, note that

∫
δ<|x|≤1 Qn(x)dx∫
δ<|x|≤1 Qn−1(x)dx

≤ (1− δ2) cn
cn−1

, while∫
|x|<δ/2 Qn(x)dx∫
|x|<δ/2 Qn−1(x)dx

≥ cn
cn−1

(1− δ2/4), so that

∫
δ<|x |≤1 Qn(x)dx∫
|x |<δ/2 Qn(x)dx

, n = 1, 2, ...

decreases by a factor of 1−δ2
1−δ2/4 < 1 at each step n = 1, 2, ..., so tends to 0.

Since each denominator is bounded by 1, the numerator tends to 0.
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The Weierstrass Approximation Theorem

Proof.

Extend f to a function continuous on R by setting f (x) = f (−1) for
x < −1 and f (x) = f (1) for x > 1.

Let |f | ≤ M.

Given ε > 0, since f is uniformly continuous there exists δ > 0 such
that |x − y | < δ implies |f (x)− f (y)| < ε

2 .

Choose N such that n > N implies
∫
δ<|x |≤1 Qn(x) < ε

4M .

Define, for x ∈ [−1, 1],

Pn(x) =
∫ 1
−1 Qn(t)f (x − t)dt =

∫ x+1
x−1 f (t)Qn(x − t)dt.

Note that this last expression is a polynomial in x after the t variable
is integrated away.
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The Weierstrass Approximation Theorem

Proof.

Recall Pn(x) =
∫ 1
−1 Qn(t)f (x − t)dt, and rewrite this integral as

Pn(x) = f (x) +

∫ 1

−1
Qn(t)(f (x − t)− f (x))dt.

Thus

|Pn(x)− f (x)|

≤
∫ δ

−δ
Qn(t)|f (x − t)− f (x)|dt +

∫
δ<|t|≤1

Qn(t)|f (x − t)− f (x)|dt

<
ε

2

∫ δ

−δ
Qn(t)dt + 2M

∫
δ<|t|≤1

Qn(t)dt ≤ ε

2
+

2Mε

4M
= ε.
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A moment theorem

Theorem

If f is continuous on [0, 1] and if for n = 0, 1, 2, ...,∫ 1

0
f (x)xndx = 0

then f (x) = 0 on [0, 1].
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A moment theorem

The proof uses the following lemma.

Lemma

Let f on [0, 1] be continuous. If
∫ 1
0 f (x)2dx = 0 then f (x) = 0 for all

x ∈ [0, 1].

Proof.

Suppose for contradiction that there is x ∈ (0, 1) with f (x) 6= 0. Choose

δ > 0 such that |y − x | < δ implies y ∈ [0, 1] and |f (y)− f (x)| < |f (x)|
2 .

In particular, |f (y)| > |f (x)|
2 . It follows that∫ 1

0
f (x)2dx ≥

∫ x+δ

x−δ
f (y)2dy ≥ 2δ

|f (x)|2

4
> 0.
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A moment theorem

Proof of moment theorem.

Let |f | ≤ M on [0, 1]. Given ε > 0, apply the Weierstrass Approximation
Theorem to choose a polynomial P such that supx∈[0,1] |f (x)− P(x)| < ε.
Write ∫ 1

0
f (x)2dx =

∫ 1

0
f (x)(f (x)− P(x))dx +

∫ 1

0
f (x)P(x)dx

≤ Mε+ 0.

Letting ε ↓ 0 proves
∫ 1
0 f (x)2dx = 0, so f (x) = 0 for all x ∈ [0, 1].
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