Math 141: Lecture 14

More limits, the Weierstrass approximation theorem, the Gaussian

Bob Hough

October 24, 2016

Bob Hough

Math 141: Lecture 14

October 24, 2016 1 / 38

Taylor expansion of composites

Problem

Give the first six terms in the Taylor expansion of sin(cos x) about x = 0.

Solution

Since $\cos 0 = 1$, Taylor expand $\sin about 1$ to find

$$\sin(1+u) = \sin 1 + u \cos 1 - \frac{u^2}{2} \sin 1 - \frac{u^3}{6} \cos 1 + O(u^4)$$

Set $u = -\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + O(x^8)$. Hence

$$\sin(\cos x) = \sin 1 + \left(-\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}\right) \cos 1$$
$$- \frac{\left(-\frac{x^2}{2!} + \frac{x^4}{4!}\right)^2}{2} \sin 1 + \frac{x^6}{48} \cos 1 + O(x^8)$$

Taylor expansion of composites

Problem

Give the first four terms in the Taylor expansion of $e^{\sin x}$ about x = 0.

Solution

Use
$$e^{u} = 1 + u + \frac{u^{2}}{2!} + \frac{u^{3}}{3!} + \frac{u^{4}}{4!} + O(u^{5})$$
 with $u = x - \frac{x^{3}}{3} + O(x^{5})$ to obtain
 $e^{\sin x} = 1 + \left(x - \frac{x^{3}}{3!}\right) + \frac{1}{2!}\left(x - \frac{x^{3}}{3!}\right)^{2} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + O(x^{5}).$

3

A D A D A D A

Exponential limits

Problem

Prove $\lim_{x\to 0+} x^x = 1$.

Solution

By continuity of the exponential function at 0,

$$\lim_{x\to 0+} x^x = \exp\left(\lim_{x\to 0+} x\log x\right).$$

Write $x \log x = \frac{\log x}{\frac{1}{x}}$ and apply l'Hôpital's Rule to conclude this limit is 0. Thus

$$\lim_{x\to 0+} x^x = 1.$$

(日) (周) (三) (三)

Exponential limits

Theorem

The function

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0\\ 0 & x = 0 \end{cases}$$

is infinitely differentiable and has all derivatives at 0 equal to 0.

Proof.

We check that there is a polynomial P_n such that

$$f^{(n)}(x) = \begin{cases} P_n\left(\frac{1}{x}\right)e^{-\frac{1}{x^2}} & x \neq 0\\ 0 & x = 0 \end{cases}$$

This is true if n = 0. If it holds for some $n \ge 0$, then for $x \ne 0$, differentiating with the product rule gives $(n+1)x = (n+1) + 1 = 2Pr(\frac{1}{2}) = 1$

$$f^{(n+1)}(x) = \left(-P'_n\left(\frac{1}{x}\right)\frac{1}{x^2} + \frac{2P_n\left(\frac{1}{x}\right)}{x^3}\right)e^{-\frac{1}{x^2}}$$
, as required.

Exponential limits

Proof.

To check that $f^{(n+1)}(0) = 0$ write $\lim_{x \to 0} \frac{P_n\left(\frac{1}{x}\right)}{x} e^{-\frac{1}{x^2}}.$ Substitute $x \mapsto \frac{1}{x}$ and note that $\lim_{x \to \infty} x P_n(x) e^{-x^2} = 0, \qquad \lim_{x \to -\infty} x P_n(x) e^{-x^2} = 0$

to evaluate the right and left limits at 0.

D -1		ы.		_	
DO	0	= (зu	2	
				-	

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Trig substitution

The substitution $u = \tan \frac{x}{2}$ permits integration of rational functions in sin and cos.

Problem

Integrate $\int \frac{dx}{\sin x + \cos x}$.

Solution

Substitute $u = \tan \frac{x}{2}$ to obtain

$$x = 2 \arctan u, \qquad dx = \frac{2du}{1+u^2},$$

$$\sin x = 2 \sin \frac{x}{2} \cos \frac{x}{2} = \frac{2\tan \frac{x}{2}}{\sec^2 \frac{x}{2}} = \frac{2u}{1+u^2},$$

$$\cos x = 2\cos^2 \frac{x}{2} - 1 = \frac{2}{\sec^2 \frac{x}{2}} - 1 = \frac{2}{1+u^2} - 1 = \frac{1-u^2}{1+u^2}.$$

3

Trig substitution

Solution

Write $\sin x + \cos x = \frac{2u+1-u^2}{1+u^2}$ to write

$$\int \frac{dx}{\sin x + \cos x} = -2 \int \frac{du}{u^2 - 2u - 1}$$
$$= -2 \int \frac{du}{(u - 1 - \sqrt{2})(u - 1 + \sqrt{2})}$$
$$= \frac{1}{\sqrt{2}} \log \left| \frac{u - 1 + \sqrt{2}}{u - 1 - \sqrt{2}} \right| + C$$
$$= \frac{1}{\sqrt{2}} \log \left| \frac{\tan \frac{x}{2} - 1 + \sqrt{2}}{\tan \frac{x}{2} - 1 - \sqrt{2}} \right| + C.$$

Improper integrals

Definition

The infinite integral is defined by a limit, if it exists,

$$\int_a^\infty f(x)dx = \lim_{b\to +\infty} \int_a^b f(x)dx,$$

and

$$\int_{-\infty}^{a} f(x) dx = \lim_{b \to -\infty} \int_{b}^{a} f(x) dx.$$

Define, for any $c \in \mathbb{R}$,

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{c} f(x) dx + \int_{c}^{\infty} f(x) dx.$$

If an infinite integral exists, it is said to be convergent.

3

A D A D A D A

Examples

• $\int_0^1 x^{s-1} dx$ converges for s > 0 and diverges for $s \le 0$, since

$$\int_b^1 x^{s-1} dx = \begin{cases} \frac{1-b^s}{s} & s \neq 0, \\ -\log b & s = 0 \end{cases}$$

• $\int_0^\infty \sin x dx$ does not converge, since

$$\int_0^b \sin x dx = 1 - \cos b$$

varies between 0 and 2 for arbitrarily large b.

•
$$\int_0^\infty e^{-x} dx = 1$$
 since $\int_0^a e^{-x} dx = 1 - e^{-a}$ for $a > 0$.

- 3

(日) (周) (三) (三)

Improper integrals of a second kind

Definition

Suppose that f is bounded and integrable on subintervals [x, b] of [a, b]. If f is unbounded on [a, b], it's improper integral, if it exists, is

$$\int_a^b f(x) dx = \lim_{x \downarrow a} \int_x^b f(x) dx.$$

The Gamma function

Definition

Let s > 0. The Gamma function $\Gamma(s)$ is defined by the improper integral

$$\Gamma(s) = \int_0^\infty e^{-x} x^{s-1} dx.$$

3

- ▲ 17

The Gamma function

 When 0 < s < 1 the above integral is improper at both endpoints, and is defined by

$$\Gamma(s) = \int_0^1 e^{-x} x^{s-1} dx + \int_1^\infty e^{-x} x^{s-1} dx.$$

• To check that the first integral converges, note that $\int_a^1 e^{-x} x^{s-1} dx$ is continuous and decreasing as a function of *a* and bounded above by $\frac{1}{s} = \int_0^1 x^{s-1} dx$, hence has a limit equal to its supremum at a = 0.

The Gamma function

To check that the second integral converges, note that

$$\int_{1}^{a} e^{-x} x^{s-1} dx = \left(\frac{1}{e} - a^{s-1} e^{-a}\right) + (s-1) \int_{1}^{a} e^{-x} x^{s-2} dx$$

is an increasing function of *a*. If $0 < s \le 1$ the integral is bounded by $\int_1^{\infty} e^{-x} dx = \frac{1}{e}$. Since it is increasing and bounded above, it converges to its supremum, see HW9. To check that the integral converges for all *s*, use the integration by parts formula to replace *s* with s - 1; apply induction.

Properties Gamma function

Theorem

The Γ function satisfies the following properties.

Por s ≥ 0, *s*Γ(*s*) = Γ(*s* + 1). In particular, for integers *n* ≥ 1, Γ(*n*) = (*n* − 1)!.
 Γ(¹/₂) = √π.

Proof.

$$\Gamma(1)=\int_0^\infty e^{-x}dx=1.$$
 To prove the second relation, integrate by parts in

$$\int_{a}^{b} e^{-x} x^{s-1} dx = a^{s-1} e^{-a} - b^{s-1} e^{-b} + (s-1) \int_{a}^{b} e^{-x} x^{s-2} dx.$$

Taking the limit, first as $b \to \infty$, then as $a \to 0$, the evaluation terms both vanish, leaving $\Gamma(s) = (s - 1)\Gamma(s - 1)$.

Properties Gamma function

Proof.

We give a 'proof sketch' of the last relation, since the easiest proof uses multiple integrals, which we don't treat in this course. Substitute $u = \sqrt{x}$, $2du = \frac{dx}{\sqrt{x}}$ to write

$$\Gamma\left(\frac{1}{2}\right) = \int_0^\infty e^{-x} \frac{dx}{\sqrt{x}}$$
$$= 2 \int_0^\infty e^{-u^2} du = \int_{-\infty}^\infty e^{-u^2} du.$$

Thus $\Gamma\left(\frac{1}{2}\right)^2 = \int_{x,y \in \mathbb{R}^2} e^{-x^2 - y^2} dx dy$. Note that this requires justification that the two integrals over x and y can be merged into 1, which we don't cover in this course.

Properties Gamma function

Proof.

Change to polar coordinates (r, θ) where $r^2 = x^2 + y^2$ and $\theta = \arctan(y/x)$. The function is independent of θ , hence is constant on concentric circles about the origin. The area of the circular rim between r and $r + \delta$ is $2\pi r \delta + O(\delta^2)$, and hence the integral has value

$$\Gamma\left(\frac{1}{2}\right)^2 = 2\pi \int_0^\infty e^{-r^2} r dr = \pi \int_0^\infty e^{-x} dx = \pi.$$

The Gaussian

The function $G(x) = \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}}$ is the density function of a 'Gaussian' or 'normal' distribution (the 'bell curve'). It is ubiquitous in statistics and mathematical analysis. By the previous theorem,

$$\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-\frac{x^2}{2}}dx=1.$$

The numbers $M(n) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^n e^{-\frac{x^2}{2}} dx$ are called the moments of the Gaussian. For odd *n* these vanish since the integrand is odd (pair x and -x). Set m(n) = M(2n) for the even moments.

Moments of the Gaussian

The even moments of the Gaussian are given by

$$m(n) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^{2n} e^{-\frac{x^2}{2}} dx = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} x^{2n} e^{\frac{-x^2}{2}} dx.$$

Substitute $u = \frac{x^2}{2}$, du = xdx to find

$$m(n) = \frac{2^n}{\sqrt{\pi}} \int_0^\infty u^{n-\frac{1}{2}} e^{-u} du$$

= $2^n \frac{\Gamma(n+\frac{1}{2})}{\Gamma(\frac{1}{2})}$
= $2^n \frac{1}{2} \frac{3}{2} \dots \left(n-\frac{1}{2}\right) = 1 \cdot 3 \cdot \dots \cdot (2n-1).$

< 4 → <

Gauss

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Gaussian

2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Change of variance

3

<ロ> (日) (日) (日) (日) (日)

Fitting the bell curve

A ► <

2

Multi-dimensional Gaussian

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The sup distance on continuous functions

Definition

Let I be an interval, and let f be a bounded function on I. The sup norm of f is

$$\|f\|_{\infty} = \sup_{x \in I} |f(x)|.$$

A sequence of bounded functions $\{f_n\}_{n=0}^{\infty}$ converges uniformly to a bounded function f if

$$\lim_{n\to\infty}\|f-f_n\|_{\infty}=0.$$

The sup distance on continuous functions

Theorem

Let $\{f_n\}_{n=0}^{\infty}$ be a sequence of continuous functions on [a, b] converging uniformly to f. Then f is continuous.

Remark: we say that the set of continuous functions on [a, b] is *closed* under uniform convergence.

Proof.

Given $\epsilon > 0$ choose N sufficiently large so that n > N implies $\|f - f_n\|_{\infty} < \frac{\epsilon}{3}$. Pick any n > N, and let $\delta > 0$ be such that $|y - x| < \delta$ implies $|f_n(y) - f_n(x)| < \frac{\epsilon}{3}$. Then, by the triangle inequality,

$$|f(y) - f(x)| \le |f(y) - f_n(y)| + |f_n(y) - f_n(x)| + |f_n(x) - f(x)| < \epsilon.$$

This proves that f is uniformly continuous on [a, b].

イロト 不得下 イヨト イヨト 二日

Pointwise convergence

Definition

Let $\{f_n\}_{n=0}^{\infty}$ be a sequence of functions on an interval *I*, and let *f* be a function on *I*. The sequence $\{f_n\}_{n=0}^{\infty}$ converges pointwise to *f* if, for each $x \in I$,

$$\lim_{n\to\infty}f_n(x)=f(x).$$

くほと くほと くほと

Example of pointwise convergence

- Let $\{f_n(x) = x^n\}$ be functions on [0, 1], and let f(x) = 0 if $0 \le x < 1$ and f(1) = 1, otherwise.
 - Then f_n converges to f pointwise, since for all n, $1^n = 1$, $0^n = 0$, while for all 0 < x < 1, $x^n = \exp(n \log x)$ tends to 0 as $n \to \infty$, since $\log x < 0$.
 - f_n does not tend to f uniformly, and in fact, $||f_n f||_{\infty} = 1$ for all n, since $f_n(x) \to 1$ as $x \to 1$ for each n.

イロト 不得下 イヨト イヨト 二日

Theorem (Weierstrass Approximation Theorem)

Let f be a continuous function on [-1,1]. There exists a sequence of polynomials $\{P_n\}_{n=0}^{\infty}$ converging uniformly to f on [-1,1].

The Weierstrass Approximation Theorem Illustration

< 67 ▶

The Weierstrass Approximation Theorem Illustration

Bob Hough

Math 141: Lecture 14

October 24, 2016 31 / 38

___ ▶

The Weierstrass Approximation Theorem Illustration

< 🗗 🕨

Proof.

Let
$$Q_n(x) = c_n(1-x^2)^n$$
 where c_n is a constant such that
 $\int_{-1}^1 Q_n(x) dx = 1$. These polynomials satisfy
a $Q_n \ge 0$
a For each $\delta > 0$, $\lim_{n\to\infty} \int_{\delta < |x| \le 1} Q_n(x) dx = 0$.
To prove the second item, note that $\frac{\int_{\delta < |x| \le 1} Q_n(x) dx}{\int_{\delta < |x| \le 1} Q_{n-1}(x) dx} \le (1-\delta^2) \frac{c_n}{c_{n-1}}$, while
 $\frac{\int_{|x| < \delta/2} Q_n(x) dx}{\int_{|x| < \delta/2} Q_{n-1}(x) dx} \ge \frac{c_n}{c_{n-1}} (1-\delta^2/4)$, so that
 $\frac{\int_{\delta < |x| \le 1} Q_n(x) dx}{\int_{|x| < \delta/2} Q_n(x) dx}$, $n = 1, 2, ...$

decreases by a factor of $\frac{1-\delta^2}{1-\delta^2/4} < 1$ at each step n = 1, 2, ..., so tends to 0. Since each denominator is bounded by 1, the numerator tends to 0.

Proof.

- Extend f to a function continuous on \mathbb{R} by setting f(x) = f(-1) for x < -1 and f(x) = f(1) for x > 1.
- Let $|f| \leq M$.
- Given $\epsilon > 0$, since f is uniformly continuous there exists $\delta > 0$ such that $|x y| < \delta$ implies $|f(x) f(y)| < \frac{\epsilon}{2}$.
- Choose N such that n > N implies $\int_{\delta < |x| \le 1} Q_n(x) < \frac{\epsilon}{4M}$.
- Define, for $x \in [-1, 1]$, $P_n(x) = \int_{-1}^1 Q_n(t) f(x-t) dt = \int_{x-1}^{x+1} f(t) Q_n(x-t) dt.$
- Note that this last expression is a polynomial in x after the t variable is integrated away.

(日) (周) (三) (三)

Proof.

• Recall
$$P_n(x) = \int_{-1}^1 Q_n(t) f(x-t) dt$$
, and rewrite this integral as

$$P_n(x) = f(x) + \int_{-1}^1 Q_n(t)(f(x-t) - f(x))dt.$$

Thus

$$\begin{split} |P_n(x) - f(x)| \\ &\leq \int_{-\delta}^{\delta} Q_n(t) |f(x-t) - f(x)| dt + \int_{\delta < |t| \le 1} Q_n(t) |f(x-t) - f(x)| dt \\ &< \frac{\epsilon}{2} \int_{-\delta}^{\delta} Q_n(t) dt + 2M \int_{\delta < |t| \le 1} Q_n(t) dt \le \frac{\epsilon}{2} + \frac{2M\epsilon}{4M} = \epsilon. \end{split}$$

- E

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

A moment theorem

Theorem

If f is continuous on $\left[0,1\right]$ and if for n=0,1,2,...,

$$\int_0^1 f(x) x^n dx = 0$$

then f(x) = 0 on [0, 1].

D	
ROF	urch
DOL	uen

3

▲ 同 ▶ → 三 ▶

A moment theorem

The proof uses the following lemma.

Lemma

Let f on [0,1] be continuous. If $\int_0^1 f(x)^2 dx = 0$ then f(x) = 0 for all $x \in [0,1]$.

Proof.

Suppose for contradiction that there is $x \in (0,1)$ with $f(x) \neq 0$. Choose $\delta > 0$ such that $|y - x| < \delta$ implies $y \in [0,1]$ and $|f(y) - f(x)| < \frac{|f(x)|}{2}$. In particular, $|f(y)| > \frac{|f(x)|}{2}$. It follows that

$$\int_0^1 f(x)^2 dx \geq \int_{x-\delta}^{x+\delta} f(y)^2 dy \geq 2\delta rac{|f(x)|^2}{4} > 0.$$

A moment theorem

Proof of moment theorem.

Let $|f| \leq M$ on [0, 1]. Given $\epsilon > 0$, apply the Weierstrass Approximation Theorem to choose a polynomial P such that $\sup_{x \in [0,1]} |f(x) - P(x)| < \epsilon$. Write

$$\int_0^1 f(x)^2 dx = \int_0^1 f(x)(f(x) - P(x)) dx + \int_0^1 f(x)P(x) dx$$

$$\leq M\epsilon + 0.$$

Letting $\epsilon \downarrow 0$ proves $\int_0^1 f(x)^2 dx = 0$, so f(x) = 0 for all $x \in [0, 1]$.