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The Taylor Polynomial of a function

Definition

Let f be n-times differentiable at a point a. The degree n Taylor
polynomial of f at a is

Tnf (x ; a) =
n∑

j=0

f (j)(a)

j!
(x − a)j .

The degree n Taylor polynomial satisfies, for each 0 ≤ j ≤ n,

d j

dx j
Tnf (x ; a)

∣∣∣∣
x=a

= f (j)(a).
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Algebra of Taylor Polynomials

Theorem

Let f and g have n derivatives at the point a. The following functions
have n derivatives at a, with Taylor polynomials given.

1 If c1 and c2 are constants, c1f + c2g has
Tn(c1f + c2g) = c1Tn(f ) + c2Tn(g).

2 fg has Tn(fg) = Tn(Tn(f )Tn(g)).

3 If g(a) 6= 0, Tn(f /g) = Tn(Tn(f )/Tn(g)).

Proof.

Formulas for the higher derivatives of sums, products and ratios of
functions can be developed through the rules for first derivatives, and the
chain rule. In each case, the formula for the nth derivative involves only
the first n derivatives of the original functions. Hence the answer depends
only on the degree n Taylor polynomials themselves.
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Algebra of Taylor Polynomials

1 The degree n Taylor expansion of 1
1−x about 0 is found by solving

(c0 + c1x + c2x2 + ... + cnxn)(1− x) = 1.

Matching the constant coefficient, c0 = 1. Equating the remaining
coefficients gives cj = cj−1 for j = 1, 2, 3, ..., so all coefficients are 1
as expected.

2 The degree n Taylor expansion of 1
(1−x)2 is given by taking the first n

terms in the expansion

a0 + a1x + a2x2 + ...+ anxn + ... = (1 + x + ...+ xn)(1 + x + ...+ xn).

One finds a0 = 1, a1 = 2, ..., an = n + 1.
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Calculus of Taylor Polynomials

Theorem

The Taylor polynomial operator satisfies the following properties.

1 Substitution: Let c be a non-zero constant and let g(x) = f (cx).
Then Tng(x ; a) = Tnf (cx ; ca).

2 Tn(f )′ = Tn−1(f ′).

3 If g(x) =
∫ x
a f (t)dt, then Tn+1g(x ; a) =

∫ x
a Tnf (t)dt.

Proof.

For the first item, use the chain rule with g(x) = f (cx) to obtain

g ′(x) = cf ′(cx), g ′′(x) = c2f ′′(cx), ..., g (k)(x) = ck f (k)(cx),

Tng(x ; a) =
n∑

k=0

g (k)(a)

k!
(x − a)k =

n∑
k=0

f (k)(ca)

k!
(cx − ca)k = Tnf (cx ; ca).
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Calculus of Taylor Polynomials

Proof.

To prove the second property, note that both (Tnf )′ and Tn−1(f ′) are
degree n − 1 polynomials. Since all n − 1 derivatives match, the
polynomials are equal. The same argument applies to show that

Tn+1g(x ; a) =

∫ x

a
Tnf (t; a)dt.
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Some well-known Taylor Polynomials

1 Differentiating the formula Tn

(
1

1−x

)
gives a new proof of the

formula above

Tn−1

(
1

(1− x)2

)
= 1 + 2x + 3x2 + ... + nxn−1.

2 Integrating instead

Tn+1 [− log(1− x)] = x +
x2

2
+

x3

3
+ ... +

xn+1

n + 1
.
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A Taylor Theorem

Theorem

Let Pn be a polynomial of degree n ≥ 1. Let f and g be two functions
with derivatives of order n at 0 and assume that

f (x) = Pn(x) + xng(x)

where g(x)→ 0 as x → 0. Then Pn is the Taylor polynomial generated by
f at 0.

Proof.

Let h(x) = f (x)− Pn(x) = xng(x). Differentiating the product xng n
times shows that h and its first n derivatives are 0 at 0.
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Some well-known Taylor Polynomials

1 For any n ≥ 1,

1

1 + x2
= 1− x2 + x4 − ... + (−1)nx2n − (−1)n

x2(n+1)

1 + x2
.

Hence T2n

(
1

1+x2

)
= 1− x2 + x4 − ... + (−1)nx2n.

2 Integrating the previous formula gives

T2n+1(arctan x) =
n∑

k=0

(−1)k
x2k+1

2k + 1
.
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Some well-known Taylor Polynomials

1 The equation d
dx ex = ex gives

Tn (ex) = 1 +
x

1!
+

x2

2!
+

x3

3!
+ ... +

xn

n!
.

2 Substituting −x for x gives

Tn

(
e−x

)
= 1− x

1!
+

x2

2!
− ... + (−1)n

xn

n!
.
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Some well-known Taylor Polynomials

1 The hyperbolic cosine is defined by cosh x = ex+e−x

2 .

T2n cosh(x) = 1 +
x2

2!
+

x4

4!
+ ... +

x2n

(2n)!
.

2 The hyperbolic sine is defined by sinh x = ex−e−x

2 .

T2n sinh(x) = x +
x3

3!
+ ... +

x2n−1

(2n − 1)!
.
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Some well-known Taylor Polynomials

1 By the formulas, sin 0 = 0, cos 0 = 1, d
dx sin x = cos x and

d
dx cos x = − sin x ,

T2n sin x = x − x3

3!
+

x5

5!
+ ... + (−1)n−1

x2n−1

(2n − 1)!

2 Similarly

T2n cos x = 1− x2

2!
+

x4

4!
+ ... + (−1)n

x2n

(2n)!
.

Bob Hough Math 141: Lecture 13 October 19, 2016 12 / 35



Some well-known Taylor Polynomials

1 Use cos x sec x = 1 to solve for

sec x = c0 + c2x2 + c4x4 + ...,(
1− x2

2!
+

x4

4!
− x6

6!
+ ...

)
(c0 + c2x2 + c4x4 + c6x6 + ...) = 1,

so sec x = 1 + x2

2 + 5x4

24 + 61x6

720 + ....

2 Use tan x = sin x sec x to find

T5(tan x) = T5

((
1 +

x2

2
+

5x4

24

)(
x − x3

6
+

x5

120

))
= x +

x3

3
+

2x5

15
.
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Taylor’s formula with remainder

Let f have n derivatives at a. Write

f (x) =
n∑

k=0

f (k)(a)

k!
(x − a)k + En(x).

En(x) is called the remainder in Taylor’s approximation.
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Taylor’s formula with remainder

Theorem

Assume that f has a continuous second derivative in a neighborhood of a.
Then

f (x) = f (a) + (x − a)f ′(a) +

∫ x

a
(x − t)f ′′(t)dt.

Proof.

By the FTC, f (x)− f (a) =
∫ x
a f ′(t)dt = (x − a)f ′(a) +

∫ x
a f ′(t)− f ′(a)dt.

In the integral, integrate by parts using u = (f ′(t)− f ′(a)) and
dv = d(t − x). Thus

f (x) = f (a) + (x − a)f ′(a) +

∫ x

a
(x − t)f ′′(t)dt.
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Taylor’s formula with remainder

Theorem

Let f have a continuous derivative of order n + 1 in an interval containing
a. For every x in this interval,

f (x) =
n∑

k=0

f (k)(a)

k!
(x − a)k +

1

n!

∫ x

a
(x − t)nf (n+1)(t)dt.
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Taylor’s formula with remainder

Proof.

The proof is by induction. The base case was proved in the previous
theorem, so suppose this holds for some n ≥ 1. Notice that
(x−a)n+1

(n+1)! = 1
n!

∫ x
a (x − t)ndt. By the inductive assumption

f (x) =
n+1∑
k=0

f (k)(a)

k!
(x − a)k +

1

n!

∫ x

a
(x − t)n[f (n+1)(t)− f (n+1)(a)]dt.

In the integral, integrate by parts with u = f (n+1)(t)− f (n+1)(a),
dv = (x − t)ndt to find

f (x) =
n+1∑
k=0

f (k)(a)

k!
(x − a)k +

1

(n + 1)!

∫ x

a
(x − t)n+1f (n+2)(t)dt.
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The irrationality of e

Theorem

Euler’s constant e is irrational.

Proof.

Suppose e = p
q with q > 2, is rational. By Taylor expanding ex about 0,

write

e = e1 =

q∑
n=0

1

n!
+

1

q!

∫ 1

0
(1− x)qexdx .

Hence q!e is an integer, equal to

q∑
n=0

q!

n!
+

∫ 1

0
(1− x)qexdx .

The sum is an integer. The integral is positive, and bounded by
e
∫ 1
0 (1− x)qdx = e

q+1 < 1, a contradiction.
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Other forms of the remainder in Taylor’s formula

Theorem

If the (n + 1)st derivative of f satisfies m ≤ f (n+1)(t) ≤ M for all t in an
interval about a, then

m
(x − a)n+1

(n + 1)!
≤ En(x) ≤ M

(x − a)n+1

(n + 1)!
if x > a,

m
(a− x)n+1

(n + 1)!
≤ (−1)n+1En(x) ≤ M

(a− x)n+1

(n + 1)!
if x < a.

Proof.

If x > a, write En(x) = 1
n!

∫ x
a (x − t)nf (n+1)(t)dt and insert the lower and

upper bounds for f (n+1)(t) to conclude. If x < a,

(−1)n+1En(x) =
1

n!

∫ a

x
(t − x)nf (n+1)(t)dt,

and argue as before.
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Little o and Big O

Definition

Assume g(x) 6= 0 for all x 6= a in an interval containing a. The notation

f (x) = o(g(x)) as x → a

means limx→a
f (x)
g(x) = 0.

Definition

Assume g(x) 6= 0 for all x 6= a in an interval containing a. The notation

f (x) = O(g(x)) as x → a

if there is a constant C > 0 such that |f (x)| ≤ C |g(x)| for all x 6= a in a
neighborhood of a.
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Little o and Big O examples

1 f (x) = o(1) as x → a means f (x)→ 0 as x → a.

2 f (x) = o(x) as x → 0 means limx→0
f (x)
x = 0.

3 sin x = x + O(x3) as x → 0. This follows from writing
sin x = x − 1

2

∫ x
0 (x − t)2 cos tdt. The bound O(x3) follows by

bounding | cos t| ≤ 1.
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Algebra of little o and Big O

Theorem

As x → a, the following hold:

1 If f , g = o(h) then f ± g = o(h). If f , g = O(h) then f ± g = O(h).

2 If c 6= 0, if f = o(h) then cf = o(h). If f = O(g) then cf = O(g).

3 If f (x) 6= 0 in a neighborhood of a and if g = o(h) then fg = o(fh).
If g = O(h) then fg = O(fh).

Proof.

If limx→a
f (x)
h(x) = 0 and limx→a

g(x)
h(x) = 0 then, by the linearity of limits

limx→a
f (x)±g(x)

h(x) = 0 and limx→a
cf (x)
h(x) = 0. This proves the the first two o

claims. If |f | ≤ C1|h| and |g | ≤ C2|h| then by the triangle inequality
|f ± g | ≤ (C1 + C2)|h| and |cf | ≤ |c |C1|h|. This proves the first two big O
claims. Both of the last claims follow by canceling factors of |f |.
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Algebra of little o and Big O

Theorem

As x → a, the following hold:

1 If f = o(g) and g = o(h) then f = o(h). If f = O(g) and g = O(h)
then f = O(h).

2 If g = o(1) then 1
1+g = 1− g(x) + o(g(x)).

Proof.

1 If limx→a
f (x)
g(x) = limx→a

g(x)
h(x) = 0, then

limx→a
f (x)
h(x) = limx→a

f (x)
g(x)

g(x)
h(x) = 0.

2 If |f (x)| ≤ C1|g(x)| and |g(x)| ≤ C2|h(x)| then |f (x)| ≤ C1C2|h(x)|.
3 To prove the last claim 1

1+g(x) = 1− g(x) + g(x) g(x)
1+g(x) . Observe

limx→a
g(x)

1+g(x) = 0.
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Little o and Big O examples

Problem

Prove that (1 + x)
1
x = e

(
1− x

2 + 11x2

24 + o(x2)
)

as x → 0.

Solution

Write log(1+x)
x = 1− x

2 + x2

3 + o(x2) so that

(1 + x)
1
x = exp(1− x/2 + x2/3 + o(x2)) = e · eu.

with u = −x/2 + x2/3 + o(x2). As x → 0, u = O(x) tends to 0.
Furthermore, as u → 0, eu = 1 + u + u2/2 + o(u2) and so

eu = 1− x

2
+

x2

3
+

1

2

(
−x

2
+

x2

3
+ o(x2)

)2

+o(x2) = 1− x

2
+

11x2

24
+o(x2).
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Examples of limits

Problem

Prove that limx→0
log(1+ax)

x = a.

Solution

Write log(1 + ax) = ax + o(x) to conclude.
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Examples of limits

Problem

Calculate for b 6= 0, limx→0
sin ax
sin bx .

Solution

Write sin ax = ax + o(x), sin bx = bx + o(x). Thus limx→0
sin ax
sin bx = a

b .
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Examples of limits

Problem

Calculate limx→0
sin x

arctan x .

Solution

From sin x = x + o(x) and arctan x = x + o(x), deduce that the limit is 1.
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Examples of limits

Problem

Let a, b > 0 with b 6= 1. Calculate limx→0
ax−1
bx−1 .

Solution

Write ax = exp(x log a) and bx = exp(x log b). Hence
ax = 1 + x log a + o(x) and bx = 1 + x log b + o(x). It follows that the
limit is

log a

log b
.
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l’Hôpital’s Rule

Theorem

Assume f and g have derivatives f ′(x) and g ′(x) at each point x of an
open interval (a, b). Assume

lim
x→a+

f (x) = lim
x→a+

g(x) = 0

and that g ′(x) 6= 0 for all x ∈ (a, b). If the limit limx→a+
f ′(x)
g ′(x) exists then

lim
x→a+

f (x)

g(x)
= lim

x→a+

f ′(x)

g ′(x)
.
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l’Hôpital’s Rule

Proof.

Define F (x) = f (x) if x 6= a and F (a) = 0, G (x) = g(x) if x 6= a,
G (a) = 0. Thus F and G are continuous on [a, x ] and differentiable on
(a, x) for a < x < b. By Cauchy’s Mean Value Theorem, there is
a < c < x such that

[F (x)− F (a)]G ′(c) = [G (x)− G (a)]F ′(c),

which simplifies to f (x)
g(x) = f ′(c)

g ′(c) . Letting x → a+,

lim
x→a+

f (x)

g(x)
= lim

x→a+

f ′(x)

g ′(x)
.
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Examples of l’Hôpital’s Rule

Problem

Evaluate

lim
x→2

3x2 + 2x − 16

x2 − x − 2
.

Solution

Numerator and denominator vanish. By l’Hôpital, the limit equals

lim
x→2

6x + 2

2x − 1
=

14

3
.

Bob Hough Math 141: Lecture 13 October 19, 2016 31 / 35



Examples of l’Hôpital’s Rule

Problem

Let a > 0. Evaluate

lim
x→a+

√
x −
√

a +
√

x − a√
x2 − a2

Solution

Both numerator and denominator vanish as x → a. By l’Hôpital, the limit
is

lim
x→a+

1
2
√
x

+ 1
2
√
x−a

x√
x2−a2

= lim
x→a+

√
x2 − a2

2x
3
2

+

√
x + a

2x
=

1√
2a

.
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Examples of l’Hôpital’s Rule

Problem

Evaluate limx→0
log cos ax
log cos bx .

Solution

Since numerator and denominator tend to 0 we can apply l’Hôpital to find
that the limit is

lim
x→0

a sin ax cos bx

b sin bx cos ax
.

The cosine terms tend to 1, so can be removed. Write sin ax = ax + o(x)

and sin bx = bx + o(x) to conclude that the limit is a2

b2
.
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l’Hôpital’s Rule for infinite limits

Theorem

Let f and g be differentiable on (a, b) and satisfy

limx→a+ f (x) = limx→a+ g(x) =∞. If limx→a+
f ′(x)
g ′(x) = L exists then

limx→a+
f (x)
g(x) = L.
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Limits involving exponentials and logs

Theorem

If a > 0 and b > 0, we have

lim
x→∞

(log x)b

xa
= 0,

and

lim
x→∞

xb

eax
= 0.

Proof.

For r > 0, the limit limx→∞
log x
x r = limx→∞

1
x

rx r−1 = limx→∞
1
rx r = 0. The

first limit follows since the function xb is continuous from the right at 0.
For r > 0 the limit limx→∞

x
erx = 0 follows from l’Hôpital, and the limit in

general follows since xb is continuous from the right at 0.
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