Math 141: Lecture 12

The Fundamental Theorem of Algebra and properties of polynomials

Bob Hough

October 17, 2016

Bob Hough

Math 141: Lecture 12

October 17, 2016 1 / 26

Let I be an interval and let $f: I \to \mathbb{C}$ be complex valued.

- Such an f may be written as $f(x) = f_1(x) + if_2(x)$ where $f_1, f_2 : I \to \mathbb{R}$ are real valued.
- f is continuous/differentiable at a point x if and only if both f₁ and f₂ are continuous/differentiable at x. If f is differentiable at x its derivative at x is given by (the distance in the limit is the absolute value on C)

$$f'(x) = f'_1(x) + if'_2(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

• *f* is integrable on *I* if and only if both *f*₁ and *f*₂ are integrable on *I*. If *f* is integrable, its integral is given by

$$\int_a^b f(x)dx = \int_a^b f_1(x)dx + i\int_a^b f_2(x)dx.$$

- When z is a complex number, the function $f(x) = (x z)^n$, $n \ge 0$ an integer may be expanded by the binomial theorem and has real and imaginary parts that are polynomials in x, hence are continuous and differentiable.
- When n > 0 is an integer, $f(x) = \frac{1}{(x-z)^n} = \frac{(x-\overline{z})^n}{(x^2-2x\Re z+|z|^2)^n}$. The denominator is a real polynomial, so continuous and differentiable, and the numerator is of the type above, so where $x \neq z$, $\frac{1}{(x-z)^n}$ is continuous and differentiable.

The formula $\frac{d}{dx}(x-z)^n = n(x-z)^{n-1}$ which is valid for all *integer n*, may be obtained by the same algebraic manipulations used to calculate the derivative in the case that z is real: e.g. for n > 0,

$$(x+h-z)^{-n} - (x-z)^{-n}$$

$$= \left[\frac{1}{x+h-z} - \frac{1}{x-z}\right] \left[\sum_{j=0}^{n-1} \frac{1}{(x+h-z)^{n-1-j}(x-z)^j}\right]$$

$$= \frac{-h}{(x+h-z)(x-z)} \left[\sum_{j=0}^{n-1} \frac{1}{(x+h-z)^{n-1-j}(x-z)^j}\right].$$

Thus, by continuity,

$$\lim_{h \to 0} \frac{(x+h-z)^{-n} - (x-z)^{-n}}{h} = \frac{-n}{(x-z)^{n+1}}.$$

The Fundamental Theorem of Calculus may be applied separately to the imaginary and real parts to obtain integration formulas that reverse differentiation formulas obtained.

Theorem

Let $f(x) = \sum_{k=0}^{n} c_k x^k$ be a polynomial of degree *n*. For each real *a*, the function p(x) = f(x + a) is a polynomial of degree *n*.

Proof.

By the Binomial Theorem,

$$p(x) = f(x+a) = \sum_{k=0}^{n} c_k \sum_{j=0}^{k} {k \choose j} x^j a^{k-j}$$
$$= \sum_{j=0}^{n} x^j \left[\sum_{k=j}^{n} c_k {k \choose j} a^{k-j} \right].$$

The bracketed quantity is a constant, which makes p(x) a polynomial.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Complex numbers

Recall the following properties of complex numbers.

- A complex number has form z = a + bi where a and b are real.
- It's modulus is $r = |z| = \sqrt{a^2 + b^2}$ and its angle is $\theta = \tan^{-1} \frac{b}{a}$.
- Euler's formula is the representation $z = re^{i\theta} = r(\cos \theta + i \sin \theta)$
- To multiply two complex numbers $z_1 = r_1 e^{i\theta_1}$ and $z_2 = r_2 e^{i\theta_2}$, multiply their moduli and add their angles,

$$z_1z_2=r_1r_2e^{i(\theta_1+\theta_2)}.$$

- The number $e^{i\theta} = \cos \theta + i \sin \theta$ has modulus 1, since $\cos^2 \theta + \sin^2 \theta = 1$.
- The complex conjugate of z is $\overline{z} = a ib = re^{-i\theta}$. Complex conjugation commutes with arithmetic:

$$\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}, \qquad \overline{z_1\cdot z_2}=\overline{z_1}\cdot\overline{z_2}.$$

The Fundamental Theorem of Algebra

Theorem (The Fundamental Theorem of Algebra)

Let P(z) be a complex polynomial of degree $n \ge 1$. The equation P(z) = 0 has a solution in \mathbb{C} .

Proof.

Let
$$P(z) = a_n z^n + a_{n-1} z^{n-1} + ... + a_0$$
 where $a_n \neq 0$.

• Define
$$\mu = \inf \{ |P(z)| : z \in \mathbb{C} \}.$$

• When
$$|z| = R$$
 with $R > 1$ one has

$$egin{aligned} |P(z)| &\geq |a_n| R^n - (|a_{n-1}| R^{n-1} + ... + |a_0|) \ &\geq |a_n| R^n \left(1 - rac{|a_{n-1}| + ... + |a_0|}{|a_n| R}
ight). \end{aligned}$$

• Thus there is some R > 0 such that for |z| > R, $|P(z)| > \mu + 1$.

The Fundamental Theorem of Algebra

Proof.

- Since |P(z)| is continuous on $B_R(0) = \{z \in \mathbb{C} : |z| \le R\}$, the infimum μ is achieved by a point z_0 with $|z_0| \le R$, see HW8.
- Suppose $P(z_0) \neq 0$. We then examine the behavior of P(z) near z_0 to reach a contradiction.
- Define $Q(z) = \frac{P(z_0+z)}{P(z_0)}$, which is a polynomial in z with constant term equal to 1.
- Write $Q(z) = 1 + b_k z^k + b_{k+1} z^{k+1} + ... + b_n z^n$ with $b_k \neq 0$ the lowest order coefficient not equal to 0, besides the constant term.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Fundamental Theorem of Algebra

Proof.

• Recall
$$Q(z) = \frac{P(z_0+z)}{P(z_0)} = 1 + b_k z^k + b_{k+1} z^{k+1} + \dots + b_n z^n$$
.

• Let $b_k = r_k e^{i\theta_k}$ with $r_k > 0$. Consider $z = re^{i(\frac{\pi}{k} - \frac{\theta_k}{k})}$. Thus $b_k z^k = r_k r^k e^{i\pi} = -r_k r^k$.

• Write, for 0 < *r* < 1,

$$|b_{k+1}z^{k+1} + ... + b_nz^n| \le r^{k+1}(|b_{k+1}| + ... + |b_n|).$$

Thus, if r is sufficiently small, then $|b_{k+1}z^{k+1} + ... + b_nz^n| \le \frac{1}{2}r_kr^k$. • In particular, for such r,

$$|Q(z)| \le 1 - r_k r^k + \frac{1}{2} r_k r^k \le 1 - \frac{1}{2} r_k r^k < 1$$

which implies that $|P(z_0 + z)| < |P(z_0)|$, a contradiction.

It follows that $P(z_0) = 0$.

Theorem

Let $f(x) = \sum_{k=0}^{n} c_k x^k$ be a polynomial of degree at most n with coefficients in a field **F**. If f(x) = 0 for n + 1 distinct values of x, then every coefficient c_k is 0 and f(x) = 0 for all x.

Proof.

The proof is by induction on n.

- Base case: n = 0. In this case, f(x) = c is a constant. Evaluating at the root, c = 0, so f(x) = 0 for all x.
- Inductive step: Suppose the claim holds for some $n = k \ge 0$. Let n = k + 1 be the degree of f, and let r be one of the roots. By the division algorithm for polynomials,

$$f(x) = (x - r)f_1(x) + b.$$

Proof.

Recall $f(x) = (x - r)f_1(x) + b$.

- Evaluating at x = r, b = 0.
- Since the degree of f₁ is at most k and f₁ vanishes at all roots of f aside from r, f₁(x) = 0 for all x, so f(x) = 0 for all x, and all of its coefficients vanish.

Theorem

Let **F** be a field. Given distinct field elements $x_1, x_2, ..., x_n$ and (possibly equal) values $a_1, ..., a_n$, there is a unique polynomial P(x) with coefficients in **F**, of degree at most n - 1 satisfying for $1 \le i \le n$, $P(x_i) = a_i$.

Proof.

Two such polynomials have a difference which vanishes at n points, hence vanishes entirely by the previous theorem. Thus it suffices to prove the existence.

< 回 ト < 三 ト < 三 ト

Proof.

To prove existence:

• Let $Q_1(x), ..., Q_n(x)$ be defined by

$$Q_i(x) = rac{\prod_{1\leq j\leq n, j
eq i} (x-x_j)}{\prod_{1\leq j\leq n, j
eq i} (x_i-x_j)}.$$

- Note that $Q_i(x)$ is a polynomial of degree n-1, and satisfies $Q_i(x_i) = 1$ and for $i \neq i$, $Q_i(x_i) = 0$.
- Define $P(x) = \sum_{i=1}^{n} a_i Q_i(x)$, which satisfies the condition.

< 回 ト < 三 ト < 三 ト

Partial fractions over $\ensuremath{\mathbb{C}}$

Theorem

Let P(z) and $Q(z) \neq 0$ be complex polynomials without common roots. Let

$$Q(z) = (z - z_1)^{e_1} ... (z - z_n)^{e_n}$$

where $e_1, ..., e_n$ are positive integer exponents. The rational function $R(z) = \frac{P(z)}{Q(z)}$ has a unique expression as

$$R(z) = p(z) + \frac{a_{1,1}}{z - z_1} + \ldots + \frac{a_{1,e_1}}{(z - z_1)^{e_1}} + \ldots + \frac{a_{n,1}}{z - z_n} + \ldots + \frac{a_{n,e_n}}{(z - z_n)^{e_n}},$$

where p(z) is a polynomial and the $a_{i,j}$ are complex number coefficients.

Remark: This is a general set-up, since the Fundamental Theorem of Algebra guarantees that a complex polynomial with leading coefficient 1 has an expression as a product of linear terms $(z - z_i)$ where the z_i are roots. The leading coefficient of Q can be pushed into P.

- * 岬 * * モ * * モ * - モ

Partial fractions over $\ensuremath{\mathbb{C}}$

Proof.

• Consider the polynomial equation

$$P(z) = Q(z) \left[p(z) + \frac{a_{1,1}}{z - z_1} + \dots + \frac{a_{1,e_1}}{(z - z_1)^{e_1}} + \dots + \frac{a_{n,1}}{z - z_n} + \dots + \frac{a_{n,e_n}}{(z - z_n)^{e_n}} \right]$$

- Setting, successively, $z = z_1, z_2, ..., z_n$ determines the values of $a_{1,e_1}, ..., a_{n,e_n}$, since exactly one term on the right does not vanish in each case.
- Let

$$P_1^*(z) = P(z) - Q(z) \left[rac{a_{1,e_1}}{(z-z_1)^{e_1}} + rac{a_{2,e_2}}{(z-z_2)^{e_2}} + ... + rac{a_{n,e_n}}{(z-z_n)^{e_n}}
ight]$$

Partial fractions over $\ensuremath{\mathbb{C}}$

Proof.

• Note that $P_1^*(z)$ vanishes at $z_1, ..., z_n$. Cancel a factor of $(z - z_1)...(z - z_n)$ from $P_1^*(z)$ obtaining $P_1(z)$, and from Q(z) obtaining $Q_1(z)$. This produces the equation,

$$P_1(z) = Q_1(z) \left[p(z) + \frac{a_{1,1}}{z - z_1} + \dots + \frac{a_{1,e_1-1}}{(z - z_1)^{e_1-1}} + \dots + \frac{a_{n,e_n-1}}{(z - z_n)^{e_n-1}} \right]$$

- Iterate this process (formally, apply induction) m stages until all negative power terms on the right have been eliminated. Since $Q_m(z) = 1$, this obtains the equation $P_m(z) = p(z)$ which determines p(z).
- Since each of the coefficients is determined in this process, the representation is unique.

Partial fractions over \mathbb{R}

Theorem

Let P(x) and Q(x) be polynomials. The rational function $R(x) = \frac{P(x)}{Q(x)}$ may be expressed as a linear combination of functions of the following types:

- Polynomials
- 2 Negative integer powers of a linear factor: $\frac{1}{(x-r)^n}$
- So Negative integer powers of an irreducible quadratic factor: $\frac{1}{((x-a)^2+b)^n}, b > 0.$
- Negative integer powers of an irreducible quadratic factor, with derivative in the numerator: ^{2x-2a}/_{((x-a)²+b)ⁿ}, b > 0.

Partial fractions over $\mathbb R$

Proof sketch.

- Initially perform the partial fraction decomposition of P(x)
 Q(x)
 over C, as described above.
- If z is a complex root of Q(x) then \overline{z} is also a root, since $Q(\overline{z}) = \overline{Q(z)} = 0$. Dividing off a factor of $(x z)(x \overline{z})$, which is real, then repeating the argument if necessary, it follows that (x z) and $(x \overline{z})$ appear as factors of Q(x) an equal number of times.
- By taking complex conjugates throughout the partial fraction decomposition procedure, which leaves P(x) and Q(x) unchanged, it follows that for each j, $\frac{1}{(x-z)^j}$ and $\frac{1}{(x-\overline{z})^j}$ appear with coefficients that are complex conjugate of each other.

イロト 人間ト イヨト イヨト

Partial fractions over $\mathbb R$

Proof sketch.

• The polynomial $(x - z)(x - \overline{z}) = x^2 - 2\Re(z)x + |z|^2$ is quadratic irreducible. Form a common denominator in

$$\sum_{j=1}^m \frac{c_j}{(x-z)^j} + \frac{\overline{c_j}}{(x-\overline{z})^j} = \frac{p(x)}{(x^2-2x\Re(z)+|z|^2)^m}.$$

The polynomial p(x) is real, since the left hand side is invariant under complex conjugation.

• One can obtain a decomposition of $\frac{p(x)}{(x^2-2x\Re(z)+|z|^2)^m}$ into terms of type $\frac{ax+b}{(x^2-2x\Re(z)+|z|^2)^j}$ by performing repeated long divisions.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Convex hull

Definition

Let $x_1, x_2, ..., x_n$ be *n* points of \mathbb{R}^2 . The *convex hull* of $x_1, ..., x_n$ is the set

 $C = \{t_1x_1 + t_2x_2 + \ldots + t_nx_n : 0 \le t_1, \ldots, t_n \text{ and } t_1 + \ldots + t_n = 1\}.$

The convex hull of a set of points is convex, in the sense that, if $a, b \in C$, then the line segment (1 - t)a + tb, $0 \le t \le 1$ connecting a and b is contained in C.

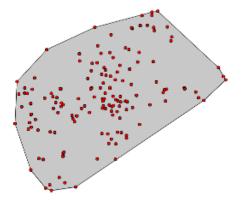
Convex hull

Definition

Given *n* points $x_1, ..., x_n$ of \mathbb{R}^2 , a supporting line of $x_1, ..., x_n$ is a line ℓ such that all *n* points lie on the same side of ℓ .

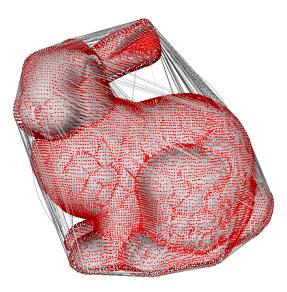
An equivalent definition of the convex hull is the intersection of all half-planes containing the points. The line defining such a half-plane is a supporting line.

Convex hull example



< 🗗 🕨 🔸

Convex hull example in 3d



- ∢ ≣ →

► < Ξ >

The Gauss-Lucas Theorem

Theorem (Gauss-Lucas Theorem)

Let P(z) be a complex polynomial. The roots of P'(z) lie within the closed convex hull of the set of roots of P(z).

Proof.

By the Fundamental Theorem of Algebra, $P(z) = a \prod_{j=1}^{n} (z - z_j)$ where $a \neq 0$ and $z_1, ..., z_n$ are the roots of P. Then

$$\frac{P'}{P}(z) = \sum_{j=1}^{n} \frac{1}{z - z_j}$$

< 回 ト < 三 ト < 三 ト

The Gauss-Lucas Theorem

Proof.

- Let ℓ be a supporting line for $z_1, ..., z_n$ in \mathbb{C} .
- Let $w = e^{i\theta}z + b$ be a rotation and translation of \mathbb{C} so that $z \in \ell$ if and only if w is real. Let Q(w) = P(z) so that the roots $w_1, ..., w_n$ of Q all lie on one side of the x-axis, say have positive imaginary part.
- Let w have negative imaginary part. Then for each j, $w w_j$ has negative imaginary part, and hence $\frac{1}{w-w_j} = \frac{\overline{w-w_j}}{|w-w_j|^2}$ has positive imaginary part.
- It follows that for w of negative imaginary part, $\frac{Q'}{Q}(w) = \sum_{j=1}^{n} \frac{1}{w w_j}$ has positive imaginary part, hence is non-zero.
- By the chain rule, Q'(e^{iθ}z + b)e^{iθ} = P'(z), and hence all zeros of P' lie on the same side of l as the zeros of P. Since this is true for all l, all zeros of P' are within the convex hull of the zeros of P.

< 🗗 🕨