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Complex valued functions

Let I be an interval and let f : I → C be complex valued.

Such an f may be written as f (x) = f1(x) + if2(x) where
f1, f2 : I → R are real valued.

f is continuous/differentiable at a point x if and only if both f1 and f2
are continuous/differentiable at x . If f is differentiable at x its
derivative at x is given by (the distance in the limit is the absolute
value on C)

f ′(x) = f ′1(x) + if ′2(x) = lim
h→0

f (x + h)− f (x)

h
.

f is integrable on I if and only if both f1 and f2 are integrable on I . If
f is integrable, its integral is given by∫ b

a
f (x)dx =

∫ b

a
f1(x)dx + i

∫ b

a
f2(x)dx .
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Complex valued functions

When z is a complex number, the function f (x) = (x − z)n, n ≥ 0 an
integer may be expanded by the binomial theorem and has real and
imaginary parts that are polynomials in x , hence are continuous and
differentiable.

When n > 0 is an integer, f (x) = 1
(x−z)n = (x−z)n

(x2−2x<z+|z|2)n . The

denominator is a real polynomial, so continuous and differentiable,
and the numerator is of the type above, so where x 6= z , 1

(x−z)n is
continuous and differentiable.
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Complex valued functions

The formula d
dx (x − z)n = n(x − z)n−1 which is valid for all integer n, may

be obtained by the same algebraic manipulations used to calculate the
derivative in the case that z is real: e.g. for n > 0,

(x + h − z)−n − (x − z)−n

=

[
1

x + h − z
− 1

x − z

]n−1∑
j=0

1

(x + h − z)n−1−j(x − z)j


=

−h

(x + h − z)(x − z)

n−1∑
j=0

1

(x + h − z)n−1−j(x − z)j

 .
Thus, by continuity,

lim
h→0

(x + h − z)−n − (x − z)−n

h
=

−n

(x − z)n+1
.
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Complex valued functions

The Fundamental Theorem of Calculus may be applied separately to the
imaginary and real parts to obtain integration formulas that reverse
differentiation formulas obtained.
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Properties of polynomials

Theorem

Let f (x) =
∑n

k=0 ckxk be a polynomial of degree n. For each real a, the
function p(x) = f (x + a) is a polynomial of degree n.

Proof.

By the Binomial Theorem,

p(x) = f (x + a) =
n∑

k=0

ck

k∑
j=0

(
k

j

)
x jak−j

=
n∑

j=0

x j

 n∑
k=j

ck

(
k

j

)
ak−j

 .
The bracketed quantity is a constant, which makes p(x) a polynomial.
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Complex numbers

Recall the following properties of complex numbers.

A complex number has form z = a + bi where a and b are real.

It’s modulus is r = |z | =
√

a2 + b2 and its angle is θ = tan−1 b
a .

Euler’s formula is the representation z = re iθ = r(cos θ + i sin θ)

To multiply two complex numbers z1 = r1e iθ1 and z2 = r2e iθ2 ,
multiply their moduli and add their angles,

z1z2 = r1r2e i(θ1+θ2).

The number e iθ = cos θ + i sin θ has modulus 1, since
cos2 θ + sin2 θ = 1.

The complex conjugate of z is z = a− ib = re−iθ. Complex
conjugation commutes with arithmetic:

z1 + z2 = z1 + z2, z1 · z2 = z1 · z2.
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The Fundamental Theorem of Algebra

Theorem (The Fundamental Theorem of Algebra)

Let P(z) be a complex polynomial of degree n ≥ 1. The equation
P(z) = 0 has a solution in C.

Proof.

Let P(z) = anzn + an−1zn−1 + ...+ a0 where an 6= 0.

Define µ = inf {|P(z)| : z ∈ C}.
When |z | = R with R > 1 one has

|P(z)| ≥ |an|Rn − (|an−1|Rn−1 + ...+ |a0|)

≥ |an|Rn

(
1− |an−1|+ ...+ |a0|

|an|R

)
.

Thus there is some R > 0 such that for |z | > R, |P(z)| > µ+ 1.
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The Fundamental Theorem of Algebra

Proof.

Since |P(z)| is continuous on BR(0) = {z ∈ C : |z | ≤ R}, the
infimum µ is achieved by a point z0 with |z0| ≤ R, see HW8.

Suppose P(z0) 6= 0. We then examine the behavior of P(z) near z0 to
reach a contradiction.

Define Q(z) = P(z0+z)
P(z0)

, which is a polynomial in z with constant term
equal to 1.

Write Q(z) = 1 + bkzk + bk+1zk+1 + ...+ bnzn with bk 6= 0 the
lowest order coefficient not equal to 0, besides the constant term.
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The Fundamental Theorem of Algebra

Proof.

Recall Q(z) = P(z0+z)
P(z0)

= 1 + bkzk + bk+1zk+1 + ...+ bnzn.

Let bk = rke iθk with rk > 0. Consider z = re i(
π
k
− θk

k
). Thus

bkzk = rk rke iπ = −rk rk .

Write, for 0 < r < 1,

|bk+1zk+1 + ...+ bnzn| ≤ rk+1(|bk+1|+ ...+ |bn|).

Thus, if r is sufficiently small, then |bk+1zk+1 + ...+ bnzn| ≤ 1
2 rk rk .

In particular, for such r ,

|Q(z)| ≤ 1− rk rk +
1

2
rk rk ≤ 1− 1

2
rk rk < 1

which implies that |P(z0 + z)| < |P(z0)|, a contradiction.

It follows that P(z0) = 0.
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Properties of polynomials

Theorem

Let f (x) =
∑n

k=0 ckxk be a polynomial of degree at most n with
coefficients in a field F. If f (x) = 0 for n + 1 distinct values of x, then
every coefficient ck is 0 and f (x) = 0 for all x.

Proof.

The proof is by induction on n.

Base case: n = 0. In this case, f (x) = c is a constant. Evaluating at
the root, c = 0, so f (x) = 0 for all x .

Inductive step: Suppose the claim holds for some n = k ≥ 0. Let
n = k + 1 be the degree of f , and let r be one of the roots. By the
division algorithm for polynomials,

f (x) = (x − r)f1(x) + b.
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Properties of polynomials

Proof.

Recall f (x) = (x − r)f1(x) + b.

Evaluating at x = r , b = 0.

Since the degree of f1 is at most k and f1 vanishes at all roots of f
aside from r , f1(x) = 0 for all x , so f (x) = 0 for all x , and all of its
coefficients vanish.
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Properties of polynomials

Theorem

Let F be a field. Given distinct field elements x1, x2, ..., xn and (possibly
equal) values a1, ..., an, there is a unique polynomial P(x) with coefficients
in F, of degree at most n − 1 satisfying for 1 ≤ i ≤ n, P(xi ) = ai .

Proof.

Two such polynomials have a difference which vanishes at n points, hence
vanishes entirely by the previous theorem. Thus it suffices to prove the
existence.
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Properties of polynomials

Proof.

To prove existence:

Let Q1(x), ...,Qn(x) be defined by

Qi (x) =

∏
1≤j≤n,j 6=i (x − xj)∏
1≤j≤n,j 6=i (xi − xj)

.

Note that Qi (x) is a polynomial of degree n − 1, and satisfies
Qi (xi ) = 1 and for j 6= i , Qi (xj) = 0.

Define P(x) =
∑n

i=1 aiQi (x), which satisfies the condition.
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Partial fractions over C

Theorem

Let P(z) and Q(z) 6= 0 be complex polynomials without common roots.
Let

Q(z) = (z − z1)e1 ...(z − zn)en

where e1, ..., en are positive integer exponents. The rational function
R(z) = P(z)

Q(z) has a unique expression as

R(z) = p(z) +
a1,1

z − z1
+ ...+

a1,e1
(z − z1)e1

+ ...+
an,1

z − zn
+ ...+

an,en
(z − zn)en

,

where p(z) is a polynomial and the ai ,j are complex number coefficients.

Remark: This is a general set-up, since the Fundamental Theorem of
Algebra guarantees that a complex polynomial with leading coefficient 1
has an expression as a product of linear terms (z − zi ) where the zi are
roots. The leading coefficient of Q can be pushed into P.
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Partial fractions over C
Proof.

Consider the polynomial equation

P(z) = Q(z)

[
p(z)+

+
a1,1

z − z1
+ ...+

a1,e1
(z − z1)e1

+ ...+
an,1

z − zn
+ ...+

an,en
(z − zn)en

]
.

Setting, successively, z = z1, z2, ..., zn determines the values of
a1,e1 , ..., an,en , since exactly one term on the right does not vanish in
each case.

Let

P∗1 (z) = P(z)− Q(z)

[
a1,e1

(z − z1)e1
+

a2,e2
(z − z2)e2

+ ...+
an,en

(z − zn)en

]
.

Bob Hough Math 141: Lecture 12 October 17, 2016 16 / 26



Partial fractions over C
Proof.

Note that P∗1 (z) vanishes at z1, ..., zn. Cancel a factor of
(z − z1)...(z − zn) from P∗1 (z) obtaining P1(z), and from Q(z)
obtaining Q1(z). This produces the equation,

P1(z) =

Q1(z)

[
p(z) +

a1,1
z − z1

+ ...+
a1,e1−1

(z − z1)e1−1
+ ...+

an,en−1
(z − zn)en−1

]
.

Iterate this process (formally, apply induction) m stages until all
negative power terms on the right have been eliminated. Since
Qm(z) = 1, this obtains the equation Pm(z) = p(z) which determines
p(z).

Since each of the coefficients is determined in this process, the
representation is unique.
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Partial fractions over R

Theorem

Let P(x) and Q(x) be polynomials. The rational function R(x) = P(x)
Q(x)

may be expressed as a linear combination of functions of the following
types:

1 Polynomials

2 Negative integer powers of a linear factor: 1
(x−r)n

3 Negative integer powers of an irreducible quadratic factor:
1

((x−a)2+b)n
, b > 0.

4 Negative integer powers of an irreducible quadratic factor, with
derivative in the numerator: 2x−2a

((x−a)2+b)n
, b > 0.
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Partial fractions over R

Proof sketch.

Initially perform the partial fraction decomposition of P(x)
Q(x) over C, as

described above.

If z is a complex root of Q(x) then z is also a root, since
Q(z) = Q(z) = 0. Dividing off a factor of (x − z)(x − z), which is
real, then repeating the argument if necessary, it follows that (x − z)
and (x − z) appear as factors of Q(x) an equal number of times.

By taking complex conjugates throughout the partial fraction
decomposition procedure, which leaves P(x) and Q(x) unchanged, it
follows that for each j , 1

(x−z)j and 1
(x−z)j appear with coefficients that

are complex conjugate of each other.
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Partial fractions over R

Proof sketch.

The polynomial (x − z)(x − z) = x2 − 2<(z)x + |z |2 is quadratic
irreducible. Form a common denominator in

m∑
j=1

cj
(x − z)j

+
cj

(x − z)j
=

p(x)

(x2 − 2x<(z) + |z |2)m
.

The polynomial p(x) is real, since the left hand side is invariant under
complex conjugation.

One can obtain a decomposition of p(x)
(x2−2x<(z)+|z|2)m into terms of

type ax+b
(x2−2x<(z)+|z|2)j by performing repeated long divisions.
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Convex hull

Definition

Let x1, x2, ..., xn be n points of R2. The convex hull of x1, ..., xn is the set

C = {t1x1 + t2x2 + ...+ tnxn : 0 ≤ t1, ..., tn and t1 + ...+ tn = 1}.

The convex hull of a set of points is convex, in the sense that, if a, b ∈ C ,
then the line segment (1− t)a + tb, 0 ≤ t ≤ 1 connecting a and b is
contained in C .
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Convex hull

Definition

Given n points x1, ..., xn of R2, a supporting line of x1, ..., xn is a line `
such that all n points lie on the same side of `.

An equivalent definition of the convex hull is the intersection of all
half-planes containing the points. The line defining such a half-plane is a
supporting line.

Bob Hough Math 141: Lecture 12 October 17, 2016 22 / 26



Convex hull example
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Convex hull example in 3d
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The Gauss-Lucas Theorem

Theorem (Gauss-Lucas Theorem)

Let P(z) be a complex polynomial. The roots of P ′(z) lie within the
closed convex hull of the set of roots of P(z).

Proof.

By the Fundamental Theorem of Algebra, P(z) = a
∏n

j=1(z − zj) where
a 6= 0 and z1, ..., zn are the roots of P. Then

P ′

P
(z) =

n∑
j=1

1

z − zj
.

Bob Hough Math 141: Lecture 12 October 17, 2016 25 / 26



The Gauss-Lucas Theorem

Proof.

Let ` be a supporting line for z1, ..., zn in C.

Let w = e iθz + b be a rotation and translation of C so that z ∈ ` if
and only if w is real. Let Q(w) = P(z) so that the roots w1, ...,wn of
Q all lie on one side of the x-axis, say have positive imaginary part.

Let w have negative imaginary part. Then for each j , w − wj has

negative imaginary part, and hence 1
w−wj

=
w−wj

|w−wj |2
has positive

imaginary part.

It follows that for w of negative imaginary part, Q′

Q (w) =
∑n

j=1
1

w−wj

has positive imaginary part, hence is non-zero.

By the chain rule, Q ′(e iθz + b)e iθ = P ′(z), and hence all zeros of P ′

lie on the same side of ` as the zeros of P. Since this is true for all `,
all zeros of P ′ are within the convex hull of the zeros of P.
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