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Definition of relative maximum, minimum

Definition

Let f be a function defined on an interval I and let c ∈ I . The point c is a
relative maximum of f if there is δ > 0 such that, for all x ∈ I , |x − c | < δ,

f (x) ≤ f (c).

The notion of relative minimum is obtained by replacing f (x) ≤ f (c) with
f (x) ≥ f (c).
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Definition of extremum

Definition

The point c is an extremum of f in I if it is either a local maximum or
local minimum.
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Definition of global maximum

Definition

Let f be a function defined on an interval I and let c ∈ I . The point c is a
global maximum of f if for all x ∈ I , f (x) ≤ f (c). The point c is a global
minimum of f if for all x ∈ I , f (x) ≥ f (c).
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Examples of extrema

The function f (x) = x(1− x)2 on −1
2 ≤ x ≤ 2 has an global minimum at

−1
2 , a global maximum at 2, a local maximum at 1

3 , and a local minimum
at 1.
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Vanishing of the derivative at an interior extremum

Theorem

Let f be a function on an interval I , and let c be a point in the interior of
I (not an endpoint). Suppose that c is an extremum of f and that f is
differentiable at c. Then f ′(c) = 0.

Proof.

Suppose that c is a relative maximum (if a relative minimum, make this
argument replacing f with −f ). Let δ > 0 be such that |x − c | < δ implies
f (x) ≤ f (c). For |h| < δ,

f (c + h)− f (c)

h

≥ 0 h < 0
≤ 0 h > 0

.

Since the limit exists, it is 0.
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Non-examples

The function f (x) = x3 satisfies f ′(0) = 0 but has no extremum at 0. The
function f (x) = |x | has a global minimum at 0, but its derivative doesn’t
exist there.
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Rolle’s Theorem

Theorem (Rolle’s Theorem)

Let f be continuous on [a, b] and differentiable on (a, b). Suppose
f (a) = f (b). Then there exists c, a < c < b, such that f ′(c) = 0.

Proof.

If f is constant on [a, b] then any a < c < b suffices. Otherwise, since f
achieves both its maximum and its minimum on [a, b], there is a point
a < c < b at which f has an extremum. Hence f ′(c) = 0.
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Mean Value Theorem for derivatives

Theorem (Mean Value Theorem)

Let f be continuous on [a, b] and differentiable on (a, b). There is a point
c, a < c < b such that

f ′(c) =
f (b)− f (a)

b − a
.

Proof.

Define g(x) on [a, b] by g(x) = x−a
b−a(f (b)− f (a)).

Then h(x) = f (x)− g(x) satisfies h(a) = h(b) = f (a).

The conditions of Rolle’s Theorem are met by h(x), and so there is
a < c < b with h′(c) = 0. Calculate

f ′(c) = h′(c) + g ′(c) = 0 +
f (b)− f (a)

b − a
.
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Cauchy’s mean-value formula

Theorem (Cauchy’s Mean Value Theorem)

Let f and g be continuous on [a, b] and differentiable on (a, b). Then
there is a c, a < c < b, such that

f ′(c)[g(b)− g(a)] = g ′(c)[f (b)− f (a)].

Proof.

Define h(x) = f (x)[g(b)− g(a)]− g(x)[f (b)− f (a)]. Then

h(b)− h(a) = [f (b)− f (a)][g(b)− g(a)]− [g(b)− g(a)][f (b)− f (a)] = 0.

By Rolle’s Theorem there is c , a < c < b such that h′(c) = 0. At this
point,

f ′(c)[g(b)− g(a)] = g ′(c)[f (b)− f (a)].
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Properties deducible from the derivative

Theorem

Let f be continuous on [a, b] and differentiable on (a, b).

If f ′(x) > 0 for all x ∈ (a, b) then f is strictly increasing on [a, b].

If f ′(x) < 0 for all x ∈ (a, b) then f is strictly decreasing on [a, b].

Proof.

Let x < y . By the Mean Value Theorem there is a point z , x < z < y
where f ′(z) and f (y)− f (x) are simultaneously positive/negative. The
strictly increasing/strictly decreasing property follows.
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First derivative test for extrema

Theorem

Let f be continuous on [a, b] and differentiable on (a, b). Let c ∈ [a, b].

If, for x in a neighborhood of c, x < c implies f ′(x) > 0 and x > c
implies f ′(x) < 0 then c is a local maximum.

If, for x in a neighborhood of c, x < c implies f ′(x) < 0 and x > c
implies f ′(x) > 0 then c is a local minimum.

Proof.

Suppose the conditions of the theorem hold for |x − c | < δ. Consider
the intervals I1 = [c − δ, c] ∩ [a, b] and I2 = [c , c + δ] ∩ [a, b].

Apply the previous theorem to conclude that f is strictly increasing on
intervals where f ′ > 0 in the interior, and f is strictly decreasing on
intervals where f ′ < 0 in the interior. This implies local max/min.
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Second derivative test for extrema

Let f be continuous on [a, b] and differentiable on (a, b). A point
c ∈ (a, b) satisfying f ′(c) = 0 is a critical point.

Theorem

Suppose f ′′ exists in (a, b) and c ∈ (a, b) is a critical point.

If f ′′ is negative in (a, b), f has a relative maximum at c.

If f ′′ is positive in (a, b), f has a relative minimum at c.

Proof.

This follows from the first derivative test.
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Derivative test for convexity

Theorem

Let f be continuous on [a, b] and differentiable in (a, b). If f ′ is increasing
in (a, b) then f is convex on [a, b]. If f ′ is decreasing on (a, b) then f is
concave there. In particular, if f ′′ exists and f ′′ > 0 (resp. f ′′ < 0) then f
is convex (resp. concave).

Proof.

Suppose f ′ is increasing. Let x < z < y . Apply the Mean Value Theorem
to find x1, x2 such that

x < x1 < z < x2 < y

and
f (z)− f (x)

z − x
= f ′(x1) ≤ f ′(x2) =

f (y)− f (z)

y − z
.

This proves that f is convex. When f ′ is decreasing, reverse the inequality
to conclude f is concave.
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Curve sketching

The graph of a function f is the set of points (x , f (x)) in R2.

An intercept (of the x axis) is a point (x , 0) where f (x) = 0.

A non-vertical line y = mx + b is an asymptote of the graph of f if
f (x)− (mx + b) tends to 0 as x →∞ or x → −∞.

A vertical line x = a is a vertical asymptote of the graph of f if f
takes arbitrarily large positive or negative values as x tends to a.

A point (a, f (a)) such that f ′′ is defined in a neighborhood of a and
changes sign at a is an inflection point.
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Illustrations

The function f (x) = x + 1
x has a vertical asymptote at x = 0, and an

asymptote y = x . There is a local minimum at x = 1, a local maximum at
x = −1. The function is odd, convex for x > 0, concave for x < 0 and
does not cross its asymptotes.
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Illustrations

The function f (x) = 1
1+x2

has a horizontal asymptote at y = 0. The

function is even, and concave between its inflection points at ±
√

1
3 ,

convex elsewhere.
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Extrema problems

Problem

Find the rectangle of largest area that can be inscribed in a semicircle, the
lower base being on the diameter.

Solution

Suppose the semicircle to have radius 1, given by
{(x , y) : y ≥ 0, x2 + y2 ≤ 1}.
Let the upper right corner of the rectangle have coordinates
(cos θ, sin θ) with 0 ≤ θ ≤ π

2 . The area is A(θ) = 2 sin θ cos θ = sin 2θ.

The maximum of sin on [0, π] is 1, which occurs at 2θ = π
2 , so θ = π

4 .
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Extrema problems

Problem

Find the trapezoid of largest area that can be inscribed in a semicircle, the
lower base being on the diameter.

Solution

Parametrize the problem as before. The area of the trapezoid is

f (θ) = 2 sin θ cos θ + sin θ(1− cos θ) = sin θ(1 + cos θ).

One has f (0) = 0 and f
(
π
2

)
= 1 (endpoint check).

Obtain f ′(θ) = cos θ + cos2 θ − sin2 θ = 2 cos2 θ + cos θ − 1.

Set x = cos θ, 0 ≤ x ≤ 1. Solving 2x2 + x − 1 = 0 gives a single
critical point at x = 1

2 , θ = π
3 . The value at this critical point is the

global max,

f
(π

3

)
=

√
3

2

(
1 +

1

2

)
=

3
√

3

4
> 1.
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Jensen’s inequality

Theorem (Jensen’s inequality)

Let f be convex on [a, b]. Let x1, ..., xn ∈ [a, b]. Let w1, ...,wn be positive
with w1 + ...+ wn = 1. Then

f (w1x1 + ...+ wnxn) ≤ w1f (x1) + ...+ wnf (xn).

In particular,

f

(
1

n
(x1 + ...+ xn)

)
≤ 1

n
(f (x1) + ...+ f (xn)).
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Jensen’s inequality

Proof.

The proof is by induction on n.

Base case: If n = 1 there is nothing to prove.

Suppose for some n ≥ 1 that the claim has been established for all
sets of weights w1, ...,wn.

Given n + 1 points x1, ..., xn+1 and n + 1 weights w1, ...,wn+1, write

w1x1 + ...+ wn+1xn+1

= (1− wn+1)

(
1

1− wn+1
(w1x1 + ...+ wnxn)

)
+ wn+1xn+1.
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Jensen’s inequality

Proof.

Notice that w ′1 = w1
1−wn+1

, ..., w ′n = wn
1−wn+1

are a set of n non-negative
weights that add to 1, so that the inductive assumption applies,
showing

f (w ′1x1 + ...+ w ′nxn) ≤ w ′1f (x1) + ...+ w ′nf (xn).

By convexity of f , then the inductive assumption,

f (w1x1 + ...+ wn+1xn+1)

≤ (1− wn+1)f

(
1

1− wn+1
(w1x1 + ...+ wnxn)

)
+ wn+1f (xn+1)

≤ w1f (x1) + ...+ wnf (xn) + wn+1f (xn+1).

Bob Hough Math 141: Lecture 10 October 10, 2016 22 / 34



Positive and negative parts

Given f a function on [a, b], define f+ = max(f , 0) and f− = min(f , 0) the
positive and negative parts of f .

Theorem

Let f be integrable on [a, b]. Then f+ and f− are integrable.

Proof.

We check this for f+. Given ε > 0, choose upper and lower step functions
u(x), `(x) such that∫ b

a
u(x)dx − ε <

∫ b

a
f (x)dx <

∫ b

a
`(x)dx + ε.

Then u+ and `+ are upper and lower step functions for f+, and

|u+(x)− `+(x)| ≤ |u(x)− `(x)| for all x . Thus
∫ b
a u+(x)− `+(x)dx ≤ 2ε,

which suffices to prove that the integral of f+ exists.
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Products of integrable functions

Theorem

Let f and g be integrable (and bounded) on [a, b]. Then fg is integrable.

Proof.

Assume 0 ≤ f , g ≤ M by splitting into positive and negative parts. Given
ε > 0, let 0 ≤ `1 ≤ u1,≤ M, 0 ≤ `2 ≤ u2 ≤ M be upper and lower step
functions for f , g , with all integrals making error < ε

2M . Then∫ b

a
u1u2(x)dx −

∫ b

a
`1`2(x)dx

=

∫ b

a
(u1u2(x)− u1`2(x)) + (u1`2(x)− `1`2(x))dx

≤ M

∫ b

a
u2(x)− `2(x)dx + M

∫ b

a
u1(x)− `1(x)dx < ε.

Since `1`2, u1u2 are step functions, `1`2 ≤ fg ≤ u1u2, fg is integrable.
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Subintervals

Theorem

Let f be integrable on [a, b]. Then f is integrable on all sub-intervals of
[a, b].

Proof.

Let [c , d ] ⊂ [a, b] and let 1[c,d ](x) equal 1 if x ∈ [c , d ], 0 otherwise. Since
this is a step function, it is integrable. The theorem now follows from the
theorem regarding products.
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Integral Jensen’s inequality

Theorem (Integral Jensen’s inequality)

Let w ≥ 0 on [a, b] be integrable with
∫ b
a w(x)dx = 1, and let f be convex

and continuous on [a, b]. Then

f

(∫ b

a
xw(x)dx

)
≤
∫ b

a
f (x)w(x)dx .

Proof.

For convenience, assume a = 0, b = 1.

Define step functions sn and fn by partitioning [0, 1] into n equal
sub-intervals and assign sn, fn the values of x , f (x) at each right
endpoint.

Let w1,n, ...,wn,n given by taking wj ,n the integral of w(x) on the jth
subinterval. Thus w1,n + ...+ wn,n = 1.
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Integral Jensen’s inequality

Proof.

Recall for 1 ≤ j ≤ n, wj ,n =
∫ j

n
j−1
n

w(x)dx and for j−1
n < x ≤ j

n ,

sn(x) = j
n and fn(x) = f ( j

n ).∫ 1
0 sn(x)w(x)dx = w1,n

1
n + ...+ wn,n

n
n ,∫ 1

0 fn(x)w(x)dx = w1,nf (1/n) + ...+ wn,nf (n/n).

By Jensen’s inequality with points 1/n, ..., n/n and weights
w1,n, ...,wn,n,

f

(∫ 1

0
sn(x)w(x)dx

)
≤
∫ 1

0
fn(x)w(x)dx .
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Integral Jensen’s inequality

Proof.

Note that |x − sn(x)| ≤ 1
n . Thus∣∣∣∣∫ 1

0
xw(x)dx −

∫ 1

0
sn(x)w(x)dx

∣∣∣∣ =

∣∣∣∣∫ 1

0
(x − sn(x))w(x)dx

∣∣∣∣
≤
∫ 1

0
|x − sn(x)|w(x)dx

≤ 1

n

∫ 1

0
w(x)dx =

1

n
.

Thus, as n→∞, ∫ 1

0
sn(x)w(x)dx →

∫ 1

0
xw(x)dx .
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Integral Jensen’s inequality

Proof.

By a theorem regarding the continuous image of a limit (Lecture 8),
since f is continuous, as n→∞,

f

(∫ 1

0
sn(x)w(x)dx

)
→ f

(∫ 1

0
xw(x)dx

)
.

Since f is uniformly continuous on [0, 1], for each ε > 0 there is N
such that n > N implies |fn(x)− f (x)| < ε. Using this as before, as
n→∞, ∫ 1

0
fn(x)w(x)dx →

∫ 1

0
f (x)w(x)dx .
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Integral Jensen’s inequality

Proof.

Since we’ve checked for each n that

f

(∫ 1

0
sn(x)w(x)dx

)
≤
∫ 1

0
fn(x)w(x)dx

it follows that

f

(∫ 1

0
xw(x)dx

)
≤
∫ 1

0
f (x)w(x)dx

by taking limits (see HW 7).
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The inequality between the harmonic and arithmetic means

The harmonic mean of n positive numbers x1, x2, ..., xn is
Hn = n

1
x1
+ 1

x2
+...+ 1

xn

.

Harmonic means arise, for instance, when calculating average speed.
For instance, if a driver drives for a mile at 30mph and a mile at 50
mph, the driver’s average speed over two miles is the harmonic mean
H = 2

1
30
+ 1

50

= 37.5.

Note that this is less than the arithmetic average of the two speeds, a
fact which is true in general.
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The inequality between the harmonic and arithmetic means

Theorem

Let x1, x2, ..., xn > 0. One has

Hn =
n

1
x1

+ ...+ 1
xn

≤ An =
x1 + ...+ xn

n
.

Proof.

Let f (x) = 1
x on (0,∞). Then f ′′(x) = 2

x3
is positive on x > 0 so f is

convex. By Jensen’s inequality,

f (An) ≤ f (x1) + ...+ f (xn)

n
⇔ An ≥ Hn.
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The arithmetic mean and the root mean square

The quadratic mean or Root Mean Square of n real numbers x1, ..., xn
is

Qn =

√
x2
1 + ...+ x2

n

n
.

The RMS often arises in discussing mean error in measurements.

In statistics, the standard deviation describes the ‘range’ around the
average in which a measurement may be expected to occur. For
instance, for data distributed according to the bell curve, 68% of data
points lie within 1 standard deviation of the average, 95% lie within 2
s.d., 99.7 % within 3 s.d. and 99.9999998% within 6 s.d. (an industry
standard).

The standard deviation of the sum of n independent measurements is
the RMS of the standard deviations of the individual measurements.
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The arithmetic mean and the root mean square

Theorem

Let x1, ..., xn be real numbers. Then

An =
x1 + ...+ xn

n
≤ Qn =

√
x2
1 + ...+ x2

n

n
.

Proof.

Consider f (x) = x2 on R, which is convex. By Jensen,

f (An) ≤ f (x1) + ...+ f (xn)

n
⇔ An ≤ Qn.
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