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Definition of relative maximum, minimum

Definition
Let f be a function defined on an interval / and let ¢ € I. The point c is a
relative maximum of f if there is 0 > 0 such that, for all x € /, |[x — ¢| < ¢,

f(x) < f(c).

The notion of relative minimum is obtained by replacing f(x) < f(c) with
f(x) > f(c).
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Definition of extremum

Definition

local minimum.

The point ¢ is an extremum of f in [ if it is either a local maximum or
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Definition of global maximum

Definition

Let f be a function defined on an interval / and let ¢ € I. The point c is a
global maximum of f if for all x € I, f(x) < f(c). The point c is a global
minimum of f if for all x € I, f(x) > f(c).
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Examples of extrema

o4 —oz/‘f o2 oz 6 08 12 12 16 18 7

1

The function f(x) = x(1 — x)? on —3 < x < 2 has an global minimum at
—%, a global maximum at 2, a local maximum at %, and a local minimum

at 1.
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Vanishing of the derivative at an interior extremum

Theorem

Let f be a function on an interval I, and let ¢ be a point in the interior of
I (not an endpoint). Suppose that c is an extremum of f and that f is
differentiable at c. Then f'(c) = 0.

Proof.

Suppose that c is a relative maximum (if a relative minimum, make this
argument replacing f with —f). Let § > 0 be such that |x — ¢| < § implies
f(x) < f(c). For |h| <9,

f(c+h)—f(c) >0 h<O
<0 h>0"

Since the limit exists, it is 0. []
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Non-examples

The function f(x) = x> satisfies f/(0) = 0 but has no extremum at 0. The

function f(x) = |x| has a global minimum at 0, but its derivative doesn't
exist there.
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Rolle's Theorem

Theorem (Rolle’s Theorem)

Let f be continuous on [a, b] and differentiable on (a, b). Suppose
f(a) = f(b). Then there exists ¢, a < ¢ < b, such that f'(c) = 0.

Proof.

If f is constant on [a, b] then any a < ¢ < b suffices. Otherwise, since f
achieves both its maximum and its minimum on [a, b], there is a point
a < ¢ < b at which f has an extremum. Hence f'(c) = 0. O

v
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Mean Value Theorem for derivatives
Theorem (Mean Value Theorem)

Let f be continuous on [a, b] and differentiable on (a, b). There is a point
¢, a < ¢ < b such that

Proof.
o Define g(x) on [a, b] by g(x) = 5=2(f(b) — f(a)).
@ Then h(x) = f(x) — g(x) satisfies h(a) = h(b) = f(a).

@ The conditions of Rolle’s Theorem are met by h(x), and so there is
a < ¢ < bwith H'(c) = 0. Calculate

f(b) — f
Fi(c) = H(c) +g'(c) =0+ B =T(d) 2)_ a(a).
DJ
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Cauchy’s mean-value formula

Theorem (Cauchy’s Mean Value Theorem)

Let f and g be continuous on [a, b] and differentiable on (a, b). Then
there is a ¢, a < ¢ < b, such that

F'(c)lg(b) — g(a)] = &'(c)[f(b) — f(a)].

Proof.
Define h(x) = f(x)[g(b) — g(a)] — g(x)[f(b) — f(a)]. Then
h(b) — h(a) = [f(b) — f(a)llg(b) — g(a)] — [g(b) — g(a)][f(b) — f(a)] = 0.

By Rolle’s Theorem there is ¢, a < ¢ < b such that ' (c) = 0. At this
point,

F'(c)le(b) — g(a)] = &'(c)[f(b) — f(a)].
O

v
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Properties deducible from the derivative

Theorem

Let f be continuous on [a, b] and differentiable on (a, b).
e Iff'(x) > 0 for all x € (a, b) then f is strictly increasing on [a, b].
e Iff'(x) <0 for all x € (a, b) then f is strictly decreasing on [a, b].

Proof.

Let x < y. By the Mean Value Theorem there is a point z, x < z < y
where f'(z) and f(y) — f(x) are simultaneously positive/negative. The
strictly increasing/strictly decreasing property follows. Ol

v
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First derivative test for extrema

Theorem

Let f be continuous on [a, b] and differentiable on (a, b). Let c € [a, b].

e If, for x in a neighborhood of ¢, x < c¢ implies f'(x) > 0 and x > ¢
implies f'(x) < 0 then c is a local maximum.

e If, for x in a neighborhood of ¢, x < ¢ implies f'(x) < 0 and x > ¢
implies f'(x) > 0 then c is a local minimum.

Proof.

@ Suppose the conditions of the theorem hold for [x — ¢| < 0. Consider
the intervals 1 = [c — d,c]N[a, b] and h = [c,c + ] N [a, b].

@ Apply the previous theorem to conclude that f is strictly increasing on
intervals where f/ > 0 in the interior, and f is strictly decreasing on
intervals where f” < 0 in the interior. This implies local max/min.

O

v
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Second derivative test for extrema

Let f be continuous on [a, b] and differentiable on (a, b). A point
¢ € (a, b) satisfying f'(c) = 0 is a critical point.
Theorem
Suppose " exists in (a,b) and c € (a, b) is a critical point.
o If f" is negative in (a, b), f has a relative maximum at c.

e If f" is positive in (a, b), f has a relative minimum at c.

Proof.

This follows from the first derivative test. 0 )
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Derivative test for convexity

Theorem

Let f be continuous on [a, b] and differentiable in (a, b). If f' is increasing
in (a, b) then f is convex on [a, b]. If f' is decreasing on (a, b) then f is
concave there. In particular, if f" exists and " > 0 (resp. " < 0) then f
is convex (resp. concave).

Proof.

Suppose f’ is increasing. Let x < z < y. Apply the Mean Value Theorem
to find xq, xp such that

X<x1<z<x<y

and
f(z) — f(X) — f-/(Xl) < f/(Xz) _ f(y) — f(Z)

zZ—X y—z

This proves that f is convex. When f’ is decreasing, reverse the inequality
to conclude f is concave. Ol

v

Bob Hough Math 141: Lecture 10 October 10, 2016 14 / 34




Curve sketching

The graph of a function f is the set of points (x, f(x)) in R?.
e An intercept (of the x axis) is a point (x,0) where f(x) = 0.
@ A non-vertical line y = mx + b is an asymptote of the graph of f if
f(x) — (mx + b) tends to 0 as x — o0 or x — —o0.
@ A vertical line x = a is a vertical asymptote of the graph of f if
takes arbitrarily large positive or negative values as x tends to a.

e A point (a, f(a)) such that " is defined in a neighborhood of a and
changes sign at a is an inflection point.
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[[lustrations

The function f(x) = x +  has a vertical asymptote at x =0, and an
asymptote y = x. There is a local minimum at x = 1, a local maximum at
x = —1. The function is odd, convex for x > 0, concave for x < 0 and
does not cross its asymptotes.

Bob Hough Math 141: Lecture 10 October 10, 2016 16 / 34



[[lustrations
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The function f(x) = 1+—le has a horizontal asymptote at y = 0. The

function is even, and concave between its inflection points at i\/z,
convex elsewhere.
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Extrema problems

Problem
Find the rectangle of largest area that can be inscribed in a semicircle, the
lower base being on the diameter.

v

Solution
@ Suppose the semicircle to have radius 1, given by
{(x,y) 1y >0,x> +y*> < 1}.
o Let the upper right corner of the rectangle have coordinates
(cosB,sinf) with 0 < 0 < 5. The area is A(f) = 2sinf cosf = sin 26.

@ The maximum of sin on [0, 7| is 1, which occurs at 20 = 7, so § = 7.

v
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Extrema problems
Problem

Find the trapezoid of largest area that can be inscribed in a semicircle, the
lower base being on the diameter.

v

Solution

@ Parametrize the problem as before. The area of the trapezoid is
f(0) = 2sinf cosf + sin (1 — cos§) = sin H(1 + cos ).

@ One has f(0) =0 and f (%) = 1 (endpoint check).

o Obtain f'(0) = cos + cos? § — sin® = 2cos?  + cos — 1.

@ Set x =cosf, 0 < x < 1. Solving 2x*> + x — 1 = 0 gives a single
critical point at x = % 0 = 3. The value at this critical point is the

global max,
1
3 2 2 4
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Jensen’s inequality

Theorem (Jensen's inequality)

Let f be convex on [a,b]. Let x1,...,x, € [a, b]. Let wy, ..., w, be positive
with wi + ... + w, = 1. Then

f(wixy + ... + Wnxn) < wif(xq) + ... + waf(x,).

In particular,

f (%(xl ¥ +x,,)> <

SHT=

(F(x1) + ... + F(xn))-
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Jensen’s inequality

Proof.
The proof is by induction on n.
@ Base case: If n =1 there is nothing to prove.
@ Suppose for some n > 1 that the claim has been established for all

sets of weights wj, ..., wp,.
e Given n+ 1 points x1, ..., Xp4+1 and n+ 1 weights wy, ..., Wy 1, write

WiX1 + ... + Whpr1Xnt1

— (1= wnir)

(wixy + ... + W,,x,,)) + Wpt1Xnt1-
1—wpp1
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Jensen’s inequality

Whn

Proof.
wi v

o Notice that wy = —2—, . = 1=
. n+1 . Wn+1 . o
weights that add to 1, so that the inductive assumption applies,
showing

f(wixy + .. + wpxp) < wyf(xy) + ... + wpf(xn)-
@ By convexity of f, then the inductive assumption,
f(wixy + ... + Wnt1Xnt1)
1
<(1- fl———
< (- wnin)f (7
< waf(xa) + oo + wWaf (Xn) + Waga f(xnt1)-

are a set of n non-negative

(wixg + ... + Wan)) + Wog1f(Xnt1)

O]

v
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Positive and negative parts

Given f a function on [a, b], define £ = max(f,0) and £~ = min(f,0) the
positive and negative parts of f.

Theorem
Let f be integrable on [a, b]. Then fi and f_ are integrable.

Proof.

We check this for . Given € > 0, choose upper and lower step functions
u(x), £(x) such that

/abu(X)dx—e</abf(x)dx</abg(x)dx+6‘

Then vy and ¢4 are upper and lower step functions for fi, and
lup(x) — L4 (x)] < |u(x) —€(x)| for all x. Thus fab uy (x) — 4 (x)dx < 2,
which suffices to prove that the integral of f| exists. O

v
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Products of integrable functions
Theorem
Let f and g be integrable (and bounded) on [a, b]. Then fg is integrable.

v

Proof.

Assume 0 < f, g < M by splitting into positive and negative parts. Given
€>0,let0</l; <wu, <M, 0< /¥ <up <M be upper and lower step
functions for f, g, with all integrals making error < 5%;. Then

b b
/uluz(x)dx—/ l105(x)dx
b
_ / (tn(x) — trfa(x)) + (1€a(x) — £r6a(x))dx

< I\/I/b ua(x) — la(x)dx + M/b ur(x) — l1(x)dx < e.

Since (145, uyuy are step functions, {14, < fg < uyup, fg is integrable. [

v
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Subintervals

Theorem

Let f be integrable on [a, b]. Then f is integrable on all sub-intervals of
[a, b].

Proof.

Let [c,d] C [a, b] and let 1 4(x) equal 1 if x € [c, d], O otherwise. Since
this is a step function, it is integrable. The theorem now follows from the
theorem regarding products. O

v
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Integral Jensen's inequality
Theorem (Integral Jensen's inequality)

Let w > 0 on [a, b] be integrable with fab w(x)dx =1, and let f be convex
and continuous on [a, b]. Then

f (/ab xw(x)dx> < /ab f(x)w(x)dx.
Proof.

For convenience, assume a =0, b = 1.

e Define step functions s, and f, by partitioning [0, 1] into n equal
sub-intervals and assign s,, f, the values of x, f(x) at each right
endpoint.

o Let wyp,...,wp, given by taking w; , the integral of w(x) on the jth
subinterval. Thus wy , + ... + wp, = 1.

D y
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Integral Jensen's inequality

Proof.
i ) .
o Recall for 1 <j < n, wj, = [/, w(x)dx and for =% < x < 4,
sn(x) = £ and f,(x) = f(£).
°fols” ( )dX—Wlnn+ +Wnnn’

fo fa(x)w(x)dx = wy nf(1/n) + ... + Wy nf(n/n).
@ By Jensen’s inequality with points 1/n, ..., n/n and weights

W1,y ees Wn.n,
f (/01 s,,(x)w(X)dX) < /01 fa(x)w(x)dx
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Integral Jensen's inequality

Proof.
@ Note that |x — sp(x)

@ Thus, as n — oo,

1
< e Thus

/0 1 xw(x)dx — /0 1 sn(x)w(x)dx

-|[ e e
</ o= sl

/O s (w(x)dx — /O ' w(x)dx.
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Integral Jensen's inequality

Proof.

@ By a theorem regarding the continuous image of a limit (Lecture 8),
since f is continuous, as n — 0o,

f ( / 1 sn<x)w(x)dx) — f ( / 1xw(x)dx) -

@ Since f is uniformly continuous on [0, 1], for each € > 0 there is N
such that n > N implies |f,(x) — f(x)| < €. Using this as before, as

n— oo,
/ n(x)w(x dx—>/ x)w(x)dx
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Integral Jensen's inequality

Proof.

Since we've checked for each n that

f ( /0 1 s,,(x)w(x)dx) < /0 1 f(X)w(x)dx

f ( /O 1xw(x)dx) < /0 1 F(x)w(x)dx

by taking limits (see HW 7). O

it follows that
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The inequality between the harmonic and arithmetic means

@ The harmonic mean of n positive numbers xi, x2, ..., X, is
Hn = ﬁnl

@ Harmonic means arise, for instance, when calculating average speed.
For instance, if a driver drives for a mile at 30mph and a mile at 50
mph, the driver's average speed over two miles is the harmonic mean
H= 12+ =375.

35+5

@ Note that this is less than the arithmetic average of the two speeds, a

fact which is true in general.
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The inequality between the harmonic and arithmetic means

Theorem

Let x1,x2, ..., x, > 0. One has

Proof.

Let f(x) = X on (0,00). Then f”(x) = X% is positive on x > 0so f is
convex. By Jensen’s inequality,

F(A) < f(x1)+ ... + f(xn)

Ap > H,.
n
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The arithmetic mean and the root mean square

The quadratic mean or Root Mean Square of n real numbers xi, ..., x,

is
Q. — X2+ .+ X2
=1 ",
n

@ The RMS often arises in discussing mean error in measurements.

@ In statistics, the standard deviation describes the ‘range’ around the
average in which a measurement may be expected to occur. For
instance, for data distributed according to the bell curve, 68% of data
points lie within 1 standard deviation of the average, 95% lie within 2
s.d., 99.7 % within 3 s.d. and 99.9999998% within 6 s.d. (an industry
standard).

@ The standard deviation of the sum of n independent measurements is
the RMS of the standard deviations of the individual measurements.
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The arithmetic mean and the root mean square

Theorem
Let x1,...,x, be real numbers. Then

.2 2
An:x1+...+x,,§Qn: xl-l—...—i—x,,‘
n n
Proof.

Consider f(x) = x? on R, which is convex. By Jensen,

(x1) + .. + F(xn)

f
<
F(An) < 2

An < Q.
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