
MATH 141, FALL 2016 PRACTICE MIDTERM 2 SOLUTIONS

NOVEMBER 2

Solve 4 of 6 problems. You may quote any result stated during lecture, so
long as you represent the result accurately.
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Problem 1.

a. (2 points) State carefully the Chain Rule of differential calculus.
b. (3 points) For integer n ≥ 1, define the n-times iterated logarithm

by log(1) x = log x, and, for n ≥ 1, and x such that log(n)(x) > 0,

log(n+1) x = log(log(n) x). Derive a formula for d
dx log(n) x.

Solution.

a. Let f be differentiable at a and g be differentiable at f(a). Then g ◦ f
is differentiable at a, and d

dxg ◦ f
∣∣
x=a

= g′(f(a))f ′(a).

b. The formula is d
dx log(n) x = 1

x

∏
1≤j<n

1
log(j) x

.

We prove the formula by induction.
Base case (n = 1): This is just the usual derivative formula for the

logarithm, d
dx log x = 1

x .
Inductive step: For n ≥ 1, by the chain rule,

d

dx
log(n+1) x =

1

log(n) x

d

dx
log(n)(x)

=
1

log(n) x

1

x

∏
1≤j<n

1

log(j) x

=
1

x

∏
1≤j<n+1

1

log(j) x
.



MATH 141, FALL 2016 PRACTICE MIDTERM 2 SOLUTIONS 3

Problem 2.

a. (2 points) State carefully the Mean Value Theorem for a function on
an interval [a, b].

b. (3 points) Prove that if f is n-times differentiable on (a, b) and f(x) = 0
for n+ 1 different x in (a, b), then f (n)(x) = 0 for some x ∈ (a, b).

Solution.

a. Let a < b. Let f be continuous on [a, b] and differentiable on (a, b).

There exists c ∈ (a, b) such that f ′(c) = f(b)−f(a)
b−a .

b. The proof is by induction.
Base case (n = 1): Let f(x1) = f(x2) = 0 for some a < x1 < x2 < b.

By the Mean Value Theorem applied to f on [x1, x2], there is a zero of
f ′(x) with x1 < x < x2.

Inductive step: Suppose the statement of the result holds for some
n ≥ 1 and let f be n+ 1-times differentiable on (a, b) with n+ 2 zeros
at {xi}n+2

i=1 , with a < x1 < x2 < ... < xn+2 < b. Applying the base
case in each interval [xi, xi+1] for 1 ≤ i ≤ n + 1, find that f ′ has zero
yi ∈ (xi, xi+1), and hence f ′ is n times differentiable with n+ 1 distinct
zeros at {yi}n+1

i=1 , a < y1 < y2 < ... < yn+1 < b. By the inductive
assumption, f (n+1) = (f ′)(n) has a zero in (a, b).
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Problem 3. Use integration by parts to derive the formula for m,n ≥ 1,∫
sinn+1 x

cosm+1 x
dx =

1

m

sinn x

cosm x
− n

m

∫
sinn−1 x

cosm−1 x
dx.

Apply the formula to integrate tan2 x and tan4 x.

Solution. Let du = sinx
cosm+1 xdx and v = sinn x, so that u = 1

m
1

cosm x and

dv = n sinn−1 x cosxdx. Integrating by parts∫
sinn+1 x

cosm+1 x
dx =

1

m

sinn x

cosm x
− n

m

∫
sinn−1 x

cosm−1 x
dx

as required.
It follows from the m = n = 1 case that∫

tan2 xdx = tanx−
∫
dx = tanx− x+ C.

It follows from the m = n = 3 case that∫
tan4 xdx =

1

3
tan3 x−

∫
tan2 xdx

=
1

3
tan3 x− tanx+ x− C.
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Problem 4. Evaluate

lim
x→∞

xe
x2

2

∫ ∞
x

e−
t2

2 dt.

Solution. The substitution u = t2

2 , du = tdt shows that∫ x

1

e−
t2

2 dt =

∫ x2

2

1
2

e−u
du√
2u
.

It was checked in lecture that limx→∞
∫ x2

2
1
2

e−u du√
2u

exists. Thus

lim
x→∞

∫ ∞
x

e−
t2

2 dt = lim
x→∞

[∫ ∞
1

e−
t2

2 dt−
∫ x

1

e−
t2

2 dt

]
= 0.

Apply l’Hôpital’s rule to determine

lim
x→∞

xe
x2

2

∫ ∞
x

e−
t2

2 dt = lim
x→∞

∫∞
1 e−

t2

2 dt−
∫ x

1 e
− t2

2 dt

1
xe
−x2

2

= lim
x→∞

−e−x2

2

− 1
x2e−

x2

2 − e−x2

2

= lim
x→∞

1

1 + 1
x2

= 1.

Note that this version of l’Hôpital’s rule differs from the version proven in
class, since we allow x→∞. The two versions are equivalent by substituting
y = 1

x and letting y ↓ 0, since

d
dyf
(
1
y

)
d
dyg
(
1
y

) =
f ′
(
1
y

)(
−1
y2

)
g′
(
1
y

)(
−1
y2

) =
f ′
(
1
y

)
g′
(
1
y

) .
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Problem 5. Prove the following Integral Cauchy-Schwarz Inequality. Let f
and g be continuous functions on [a, b]. Then(∫ b

a

f(x)g(x)dx

)2

≤
∫ b

a

f(x)2dx

∫ b

a

g(x)2dx,

with equality if and only if f = cg or g = cf for some c ∈ R.

Solution. Define D(x, y) on [a, b]× [a, b] by

D(x, y) =
1

2
(f(x)g(y)− f(y)g(x))2

=
1

2

(
f(x)2g(y)2 + f(y)2g(x)2

)
− f(x)f(y)g(x)g(y) ≥ 0.

For each fixed y, D(x, y) is continuous as a function of x, and hence integrable.

Also, as the linear combination of continuous functions, D1(y) =
∫ b

a D(x, y)dx
is continuous as a function of y. If there is a point (x, y) ∈ [a, b] × [a, b] for
which D(x, y) > 0, then D1(y) > 0. Hence∫ b

a

(∫ b

a

D(x, y)dx

)
dy ≥ 0

with equality if and only if D(x, y) = 0 for all x, y.
Integrate in x first, treating y as a constant, to find

0 ≤
∫ b

a

(∫ b

a

D(x, y)dx

)
dy =

1

2

∫ b

a

g(y)2
(∫ b

a

f(x)2dx

)
dy

+
1

2

∫ b

a

f(y)2
(∫ b

a

g(x)2dx

)
dy

−
∫ b

a

f(y)g(y)

(∫ b

a

f(x)g(x)dx

)
dy

=

∫ b

a

f(x)2dx

∫ b

a

g(x)2dx−
(∫ b

a

f(x)g(x)dx

)2

.

In case equality holds, if f ≡ 0 then the condition is met with f = 0 · g.

Otherwise, pick x with f(x) 6= 0 to check that g(y) = g(x)
f(x)f(y) for all y.
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Problem 6. A right triangle with hypotenuse of length a is rotated about
one of its legs to generate a right circular cone. Find the greatest possible
volume of such a cone.

Solution. Let the height of the cone be h and the radius of the base be r,
so that h2 + r2 = a2. The volume of the cone is

V (h) =
π

3
r2h =

π

3
(a2 − h2)h.

Thus we must maximize V (h) subject to 0 ≤ h ≤ a. At the endpoints
V (h) = 0. Calculate

V ′(h) =
π

3
(a2 − 3h2).

Thus V (h) has a single critical point on the interval (0, a) at h = a√
3
. This is

the only candidate for the maximum, and its value is

Vmax =
2πa3

9
√

3
.


