MATH 141, FALL 2016 PRACTICE MIDTERM 2

NOVEMBER 2

Solve 4 of 6 problems. You may quote any result stated during lecture, so long as you represent the result accurately.

NOVEMBER 2

Problem 1.

a. (2 points) State carefully the Chain Rule of differential calculus.

b. (3 points) For integer $n \ge 1$, define the *n*-times iterated logarithm by $\log_{(1)} x = \log x$, and, for $n \ge 1$, and x such that $\log_{(n)}(x) > 0$, $\log_{(n+1)} x = \log(\log_{(n)} x)$. Derive a formula for $\frac{d}{dx} \log_{(n)} x$.

Problem 2.

a. (2 points) State carefully the Mean Value Theorem for a function on an interval [a, b].

b. (3 points) Prove that if f is n-times differentiable on (a, b) and f(x) = 0for n + 1 different x in (a, b), then $f^{(n)}(x) = 0$ for some $x \in (a, b)$. **Problem 3.** Use integration by parts to derive the formula for $m, n \ge 1$,

$$\int \frac{\sin^{n+1} x}{\cos^{m+1} x} dx = \frac{1}{m} \frac{\sin^n x}{\cos^m x} - \frac{n}{m} \int \frac{\sin^{n-1} x}{\cos^{m-1} x} dx.$$

 $\int \cos^{m+1} x \qquad m \cos^m x \qquad m \int$ Apply the formula to integrate $\tan^2 x$ and $\tan^4 x$. Problem 4. Evaluate

$$\lim_{x \to \infty} x e^{\frac{x^2}{2}} \int_x^\infty e^{-\frac{t^2}{2}} dt.$$

NOVEMBER 2

Problem 5. Prove the following Integral Cauchy-Schwarz Inequality. Let f and g be continuous functions on [a, b]. Then

$$\left(\int_{a}^{b} f(x)g(x)dx\right)^{2} \leq \int_{a}^{b} f(x)^{2}dx \int_{a}^{b} g(x)^{2}dx$$

with equality if and only if f = cg or g = cf for some $c \in \mathbb{R}$.

Problem 6. A right triangle with hypotenuse of length a is rotated about one of its legs to generate a right circular cone. Find the greatest possible volume of such a cone.