
MATH 141, FALL 2016 PRACTICE MIDTERM 1

SEPTEMBER 28

Solve 4 of 6 problems. You may quote any result stated during lecture, so
long as you represent the result accurately.
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Problem 1. Prove by induction
n∑
i=1

i3 =

(
n(n+ 1)

2

)2

.

Solution. The proof is by induction.
Base case: n = 0. The sum is empty, hence equal to 0, which is also the

value of the RHS.

Inductive step: Suppose for some n ≥ 0 that
∑n

i=1 i
3 =

(
n(n+1)

2

)2
. Then

n+1∑
i=1

i3 =

(
n(n+ 1)

2

)2

+ (n+ 1)3 = (n+ 1)2
(
n2

4
+ n+ 1

)

=

(
n+ 1

2

)2

(n2 + 4n+ 4)

=

(
(n+ 1)(n+ 2)

2

)2

.

This completes the inductive step.
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Problem 2. Given a function f on N, we say limn→∞ f(n) = A if, for every
ε > 0 there exists N > 0 such that n > N implies |f(n)− A| < ε. Evaluate

lim
n→∞

n−3/2
n∑
k=1

√
k.

Solution. The limit has value 2
3 .

To justify this, observe that the function f(x) =
√
x is increasing on [0, 1].

Let sn and tn denote the lower and upper step functions for f(x) obtained
by partitioning [0, 1] into n equal subintervals and choosing the initial value
of each subinterval for sn and the final value of each subinterval for tn. By
the proof from lecture that increasing functions are integrable,∫ 1

0

sn(x)dx ≤
∫ 1

0

√
xdx =

2

3
≤
∫ 1

0

tn(x)dx ≤
∫ 1

0

sn(x)dx+

√
1−
√

0

n
.

Now write

n−3/2
n∑
k=1

√
k =

1

n

n∑
k=1

√
k

n
=

∫ 1

0

tn(x)dx.

Thus, for each n = 1, 2, ..., 2
3 ≤

∫ 1

0 tn(x)dx ≤ 2
3 + 1

n , and thus, given ε > 0 in

the condition for the limit, the requirement is met by taking N = 1
ε .
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Problem 3. Prove that no order can be defined in the complex field that
turns it into an ordered field.

Solution. We first make an observation: Let x 6= 0 be an element of an
ordered field. Then x · x is positive. Indeed, either x or −x is positive,
whence x · x = (−x) · (−x) is positive.

Suppose for contradiction that C is ordered. Then both 1 = (−1) · (−1)
and −1 = i · i are positive, contradiction.
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Problem 4. A complex number z is said to be algebraic if there are integers
a0, a1, ..., an, not all 0, such that

a0 + a1z + · · ·+ anz
n = 0.

Prove that the set of algebraic numbers is countable. Is every real number
algebraic?

Solution. Let P denote the set of non-zero polynomials with integral coef-
ficients. Given a non-zero polynomial P , denote r(P ) the set of roots of P .
The set Alg of algebraic numbers is

Alg =
⋃
P∈P

r(P ).

Since the set of roots of a non-zero polynomial P is finite, hence countable,
and the countable union of countable sets is countable, it suffices to prove
that P is countable.

By mapping P (x) = anx
n + an−1x

n−1 + ... + a0, an 6= 0 to the tuple
(an, an−1, ..., a0) ∈ Zn+1 we obtain an injective map P 7→

⋃
n≥1 Zn. It there-

fore suffices to check that S =
⋃
n≥1 Zn is countable. Since the collection of

sets in the union is countable, it suffices to check that Zn is countable for
every n ≥ 1. This we prove by induction.

In lecture we constructed injections f1 : Z→ N and f2 : Z2 → N. Suppose
n ≥ 2 and that we have an injection fn : Zn → N. Define a map fn+1 :
Zn+1 → N by writing Zn+1 = Zn × Z, and x ∈ Zn+1 as x = (x1, x2) with
x1 ∈ Zn, x2 ∈ Z. The map fn+1 is

fn+1(x1, x2) = f2(fn(x1), x2).

Note that (x1, x2) 7→ (fn(x1), x2) is an injection Zn+1 → Z2 since (fn(x1), x2) =
(fn(x

′
1), x

′
2) implies x2 = x′2 and x1 = x′1 (since fn is an injection). Being the

composition of injective functions, fn+1 is injective, completing the proof.
There exist non-algebraic real numbers, since the set of real numbers is

uncountable, whereas the set of real algebraic numbers is a subset of the set
of all algebraic numbers, hence countable.
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Problem 5. Let Ab
a(f) denote the average of integrable function f on an

interval [a, b]. Suppose that f is integrable on every sub-interval of [a, b]. If
a < c < b, prove that there is a number t satisfying 0 < t < 1 such that
Ab
a(f) = tAc

a(f) + (1− t)Ab
c(f). Thus Ab

a is a weighted average of Ac
a and Ab

c.

Solution. Set t = c−a
b−a so that 1− t = b−c

b−a . We check that Ab
a(f) = tAc

a(f) +

(1− t)Ab
c(f) as follows.

Ab
a(f) =

1

b− a

∫ b

a

f(x)dx

=
1

b− a

[∫ c

a

f(x)dx+

∫ b

c

f(x)dx

]
=
c− a
b− a

1

c− a

∫ c

a

f(x)dx+
b− c
b− a

1

b− c

∫ b

c

f(x)dx

= tAc
a(f) + (1− t)Ab

c(f).
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Problem 6. Give the proof of the following theorem from lecture. Let f be
a continuous function, and suppose f(c) > 0. Then there is a neighborhood
N(c, δ) such that f(x) > 0 for all x ∈ N(c, δ).

Solution. f is continuous at c means that, for every ε > 0 there exists

δ = δ(ε) > 0 such that x ∈ N(c, δ) implies |f(c)−f(x)| < ε. Choose ε = |f(c)|
2

to obtain such a δ. Then for x ∈ N(c, δ), if f(c) > 0,

f(c)− f(x) <
f(c)

2
⇒ f(x) >

f(c)

2
> 0

while if f(c) < 0,

f(x)− f(c) < −f(c)

2
⇒ f(x) <

f(c)

2
< 0.

In either case, for all x ∈ N(c, δ), f(x) has the same sign as f(c).


