
MATH 141, FALL 2016 PRACTICE FINAL

DECEMBER 15

Solve 6 of 8 problems. You may quote any result stated during lecture, so
long as you represent the result accurately.
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Problem 1.

a. (2 points) State carefully the definition of the supremum of a set which
is bounded above.

b. (3 points) Prove that a sequence which is increasing and bounded above
converges to it’s supremum.

Solution. a. Let S be a set which is bounded above. The supremum s of
S is the unique number such that s is an upper bound for S, and any
other upper bound b of S satisfies b ≥ s.

b. Let {an}∞n=1 be a sequence which is bounded above. Let s denote it’s
supremum. Since s is a supremum, given ε > 0 there is an N such that
aN > s− ε, otherwise s− ε would be a smaller lower bound. Since the
sequence is increasing, for n > N , an ≥ aN > s − ε. Also, since s is
an upper bound an ≤ s. Thus, for n > N , |s − an| < ε, so {an}∞n=1

converges to s.
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Problem 2.

a. (2 points) State the Intermediate Value Theorem.
b. (3 points) Let f : [0, 1] → [0, 1] be continuous. Prove that there is
c ∈ [0, 1] such that f(c) = c.

Solution. a. Let f be continuous on the closed interval [a, b]. For each
value s between f(a) and f(b) there is an x ∈ [a, b] such that f(x) = s.

b. Let g(x) = f(x) − x, which is continuous on [0, 1]. Since g(0) ≥ 0
and g(1) ≤ 0 the equation g(x) = 0 has a solution x ∈ [0, 1]. This x
satisfies f(x) = x.
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Problem 3.

a. (2 points) Give the definition of an uniformly continuous function on
a closed interval [a, b].

b. (3 points) Give the proof from lecture that a continuous function on a
closed interval [a, b] is bounded.

Solution. a. A function f is uniformly continuous on [a, b] if for each
ε > 0 there is δ > 0 such that if x, y ∈ [a, b] and |x − y| < δ then
|f(x)− f(y)| < ε.

b. See Lecture 7, slides 28–29.
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Problem 4. Evaluate the following limits.

a. (3 points)

lim
n→∞

(
2n!

n! · nn

) 1
n

.

b. (2 points)

lim
x→0

log(1 + x)− x
1− cosx

.

Solution. a. Let s = limn→∞
(

2n!
n!·nn

) 1
n . Write

2n!

n!nn
=

n∏
k=1

(
1 +

k

n

)
.

Thus

log s = lim
n→∞

1

n

n∑
k=1

log

(
1 +

k

n

)
=

∫ 2

1

log xdx

= x log x− x
∣∣∣∣2
1

= 2 log 2− 1.

Hence s = 4
e .

b. Write log(1 + x)− x = −x2

2 +O(x3) and 1− cosx = x2

2 +O(x3). Hence
the limit is

lim
x→0

−x2

2 +O(x3)
x2

2 +O(x3)
= −1.
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Problem 5. Determine whether each series converges. If the series con-
verges, determine whether it converges absolutely.

a. (3 points)
∞∑
n=1

(−1)n
(

1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · 2n

)
.

b. (2 points)
∞∑
n=1

1− n sin(1/n)

n
.

Solution. a. Write

an =

(
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · 2n

)
=

n∏
k=1

(
1− 1

2k

)

= exp

(
n∑
k=1

−1

2k
+O(1/k2)

)

= exp

(
− log n

2
+O(1)

)
=

exp(O(1))√
n

.

Since an decreases monotonically to 0, the series converges by the al-
ternating series test. It does not converge absolutely by comparison
with the series

∑
1√
n

(or by Gauss’s test).

b. Expand sin(1/n) = 1/n− 1
6n3 +O(1/n5). Hence the series is

∞∑
n=1

(
1 +O(1/n2)

6n3

)
which converges absolutely.
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Problem 6.

a. (2 points) Determine the degree 5 Taylor polynomial of the function
f(x) = sinx cosx2.

b. (3 points) Determine the radius of convergence of the series
∑∞

n=1
n!zn

nn .

Solution. a. Write sinx = x− x3

6 + x5

120+O(x7) and cos x2 = 1− x4

2 +O(x8).
Since both series converge absolutely their product is given by the
Cauchy product, which is

sinx cosx2 = x− x3

6
+

[
−1

2
+

1

120

]
x5 +O(x7).

The degree 5 Taylor polynomial is thus

x− x3

6
− 59

120
x5.

b. Let an = n!
nn . Then an+1

an
=
(

n
n+1

)n → 1
e as n → ∞. It follows by the

ratio test that the radius of convergence is e.
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Problem 7.

a. (2 points) Give the definition of a sequence of functions fn which con-
verges uniformly to a function f on the interval [a, b].

b. (3 points) Prove that the sequence of partial sums of the series
∑∞

n=0
xn

n!
converges uniformly on every closed interval [a, b] ⊂ R.

Solution. a. {fn}∞n=1 converges uniformly to f on [a, b] if, for each ε > 0
there exists N such that n > N implies, for all x ∈ [a, b], |fn(x) −
f(x)| < ε.

b. Let M = max(|a|, |b|). Let an = Mn

n! . Since
∑∞

n=0 an = eM converges,
the uniform convergence follows by the Weierstrass M -test.
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Problem 8.

a. (3 points) Let f(x) = (x− 1/2)2 on [0, 1]. Calculate the Fourier coeffi-

cients f̂(n) in the Fourier series of f .

b. (2 points) Prove that the series
∑∞

n=−∞ f̂(n)e2πinx converges uniformly
to f(x) on [0, 1].

Solution. a. We have f̂(0) =
∫ 1

0 (x− 1
2)2dx = 2

∫ 1
2

0 x
2dx = 1

12 . For n 6= 0,
integrating by parts twice,

f̂(n) =

∫ 1

0

(
x− 1

2

)2

e−2πinxdx

=
(x− 1

2)2e−2πinx

−2πin

∣∣∣∣1
0

+
1

2πin

∫ 1

0

(2x− 1)e−2πinxdx

=
1

πin

∫ 1

0

xe−2πinxdx

=
xe−2πinx

2π2n2

∣∣∣∣1
0

− 1

2π2n2

∫ 1

0

e−2πinxdx =
1

2π2n2
.

b. Since f̂(n) = f̂(−n) and these terms are paired together, the Fourier
series is given by

f̃(x) =
1

12
+

1

π2

∞∑
n=1

cos(2πnx)

n2
.

Let Mn = 1
n2 . Since

∑
nMn < ∞, the uniform convergence follows

from the Weierstrass M -test. By the uniform convergence, f̃(x) is
continuous. Also, the uniform convergence guarantees that

ˆ̃f(n) =

∫ 1

0

f̃(x)e−2πinxdx = f̂(n).

Since f and f̃ are continuous functions with equal Fourier coefficients,
they are equal, e.g. since

∫ 1

0 |f(x)− f̃(x)|2dx = 0.


