MATH 141, FALL 2016 PRACTICE FINAL

DECEMBER 15

Solve 6 of 8 problems. You may quote any result stated during lecture, so long as you represent the result accurately.

Problem 1.

2

- a. (2 points) State carefully the definition of the supremum of a set which is bounded above.
- b. (3 points) Prove that a sequence which is increasing and bounded above converges to it's supremum.
- **Solution.** a. Let S be a set which is bounded above. The supremum s of S is the unique number such that s is an upper bound for S, and any other upper bound b of S satisfies $b \ge s$.
 - b. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence which is bounded above. Let s denote it's supremum. Since s is a supremum, given $\epsilon > 0$ there is an N such that $a_N > s \epsilon$, otherwise $s \epsilon$ would be a smaller lower bound. Since the sequence is increasing, for n > N, $a_n \ge a_N > s \epsilon$. Also, since s is an upper bound $a_n \le s$. Thus, for n > N, $|s a_n| < \epsilon$, so $\{a_n\}_{n=1}^{\infty}$ converges to s.

Problem 2.

- a. (2 points) State the Intermediate Value Theorem.
- b. (3 points) Let $f:[0,1]\to [0,1]$ be continuous. Prove that there is $c\in [0,1]$ such that f(c)=c.

Solution. a. Let f be continuous on the closed interval [a, b]. For each value s between f(a) and f(b) there is an $x \in [a, b]$ such that f(x) = s.

b. Let g(x) = f(x) - x, which is continuous on [0,1]. Since $g(0) \ge 0$ and $g(1) \le 0$ the equation g(x) = 0 has a solution $x \in [0,1]$. This x satisfies f(x) = x.

Problem 3.

- a. (2 points) Give the definition of an uniformly continuous function on a closed interval [a, b].
- b. (3 points) Give the proof from lecture that a continuous function on a closed interval [a, b] is bounded.
- **Solution.** a. A function f is uniformly continuous on [a,b] if for each $\epsilon > 0$ there is $\delta > 0$ such that if $x,y \in [a,b]$ and $|x-y| < \delta$ then $|f(x) f(y)| < \epsilon$.
 - b. See Lecture 7, slides 28–29.

Problem 4. Evaluate the following limits.

a. (3 points)

$$\lim_{n \to \infty} \left(\frac{2n!}{n! \cdot n^n} \right)^{\frac{1}{n}}.$$
b. (2 points)
$$\lim_{x \to 0} \frac{\log(1+x) - x}{1 - \cos x}.$$

Solution.

a. Let
$$s = \lim_{n \to \infty} \left(\frac{2n!}{n! \cdot n^n}\right)^{\frac{1}{n}}$$
. Write
$$\frac{2n!}{n! n^n} = \prod_{k=1}^n \left(1 + \frac{k}{n}\right).$$

Thus

$$\log s = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \log \left(1 + \frac{k}{n} \right)$$
$$= \int_{1}^{2} \log x dx$$
$$= x \log x - x \Big|_{1}^{2} = 2 \log 2 - 1.$$

Hence $s = \frac{4}{e}$.

b. Write $\log(1+x) - x = -\frac{x^2}{2} + O(x^3)$ and $1 - \cos x = \frac{x^2}{2} + O(x^3)$. Hence the limit is $\lim_{x \to 0} \frac{-\frac{x^2}{2} + O(x^3)}{\frac{x^2}{2} + O(x^3)} = -1.$

Problem 5. Determine whether each series converges. If the series converges, determine whether it converges absolutely.

a. (3 points)
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n} \right).$$
b. (2 points)
$$\sum_{n=1}^{\infty} \frac{1 - n \sin(1/n)}{n}.$$

Solution. a. Write

$$a_n = \left(\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n}\right) = \prod_{k=1}^n \left(1 - \frac{1}{2k}\right)$$
$$= \exp\left(\sum_{k=1}^n \frac{-1}{2k} + O(1/k^2)\right)$$
$$= \exp\left(-\frac{\log n}{2} + O(1)\right) = \frac{\exp(O(1))}{\sqrt{n}}.$$

Since a_n decreases monotonically to 0, the series converges by the alternating series test. It does not converge absolutely by comparison with the series $\sum \frac{1}{\sqrt{n}}$ (or by Gauss's test).

b. Expand $\sin(1/n) = 1/n - \frac{1}{6n^3} + O(1/n^5)$. Hence the series is

$$\sum_{n=1}^{\infty} \left(\frac{1 + O(1/n^2)}{6n^3} \right)$$

which converges absolutely.

Problem 6.

- a. (2 points) Determine the degree 5 Taylor polynomial of the function $f(x) = \sin x \cos x^2$.
- b. (3 points) Determine the radius of convergence of the series $\sum_{n=1}^{\infty} \frac{n! z^n}{n^n}$.
- **Solution.** a. Write $\sin x = x \frac{x^3}{6} + \frac{x^5}{120} + O(x^7)$ and $\cos x^2 = 1 \frac{x^4}{2} + O(x^8)$. Since both series converge absolutely their product is given by the Cauchy product, which is

$$\sin x \cos x^2 = x - \frac{x^3}{6} + \left[-\frac{1}{2} + \frac{1}{120} \right] x^5 + O(x^7).$$

The degree 5 Taylor polynomial is thus

$$x - \frac{x^3}{6} - \frac{59}{120}x^5.$$

b. Let $a_n = \frac{n!}{n^n}$. Then $\frac{a_{n+1}}{a_n} = \left(\frac{n}{n+1}\right)^n \to \frac{1}{e}$ as $n \to \infty$. It follows by the ratio test that the radius of convergence is e.

Problem 7.

- a. (2 points) Give the definition of a sequence of functions f_n which converges uniformly to a function f on the interval [a, b].
- b. (3 points) Prove that the sequence of partial sums of the series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges uniformly on every closed interval $[a,b] \subset \mathbb{R}$.
- **Solution.** a. $\{f_n\}_{n=1}^{\infty}$ converges uniformly to f on [a,b] if, for each $\epsilon > 0$ there exists N such that n > N implies, for all $x \in [a,b]$, $|f_n(x) f(x)| < \epsilon$.
 - b. Let $M = \max(|a|, |b|)$. Let $a_n = \frac{M^n}{n!}$. Since $\sum_{n=0}^{\infty} a_n = e^M$ converges, the uniform convergence follows by the Weierstrass M-test.

Problem 8.

- a. (3 points) Let $f(x) = (x 1/2)^2$ on [0, 1]. Calculate the Fourier coefficients $\hat{f}(n)$ in the Fourier series of f.
- b. (2 points) Prove that the series $\sum_{n=-\infty}^{\infty} \hat{f}(n)e^{2\pi inx}$ converges uniformly to f(x) on [0,1].

Solution. a. We have $\hat{f}(0) = \int_0^1 (x - \frac{1}{2})^2 dx = 2 \int_0^{\frac{1}{2}} x^2 dx = \frac{1}{12}$. For $n \neq 0$, integrating by parts twice,

$$\hat{f}(n) = \int_0^1 \left(x - \frac{1}{2} \right)^2 e^{-2\pi i n x} dx$$

$$= \frac{(x - \frac{1}{2})^2 e^{-2\pi i n x}}{-2\pi i n} \Big|_0^1 + \frac{1}{2\pi i n} \int_0^1 (2x - 1) e^{-2\pi i n x} dx$$

$$= \frac{1}{\pi i n} \int_0^1 x e^{-2\pi i n x} dx$$

$$= \frac{x e^{-2\pi i n x}}{2\pi^2 n^2} \Big|_0^1 - \frac{1}{2\pi^2 n^2} \int_0^1 e^{-2\pi i n x} dx = \frac{1}{2\pi^2 n^2}.$$

b. Since $\hat{f}(n) = \hat{f}(-n)$ and these terms are paired together, the Fourier series is given by

$$\tilde{f}(x) = \frac{1}{12} + \frac{1}{\pi^2} \sum_{n=1}^{\infty} \frac{\cos(2\pi nx)}{n^2}.$$

Let $M_n = \frac{1}{n^2}$. Since $\sum_n M_n < \infty$, the uniform convergence follows from the Weierstrass M-test. By the uniform convergence, $\tilde{f}(x)$ is continuous. Also, the uniform convergence guarantees that

$$\hat{\tilde{f}}(n) = \int_0^1 \tilde{f}(x)e^{-2\pi i nx} dx = \hat{f}(n).$$

Since f and \tilde{f} are continuous functions with equal Fourier coefficients, they are equal, e.g. since $\int_0^1 |f(x) - \tilde{f}(x)|^2 dx = 0$.