MATH 141, FALL 2016 PRACTICE FINAL

DECEMBER 15

Solve 6 of 8 problems. You may quote results stated during lecture, so long as you represent the result accurately.

DECEMBER 15

Problem 1.

a. (2 points) State carefully the definition of the supremum of a set which is bounded above.

b. (3 points) Prove that a sequence which is increasing and bounded above converges to it's supremum.

 $\mathbf{2}$

Problem 2.

a. (2 points) State the Intermediate Value Theorem.

b. (3 points) Let $f : [0,1] \to [0,1]$ be continuous. Prove that there is $c \in [0,1]$ such that f(c) = c.

DECEMBER 15

Problem 3.

a. (2 points) Give the definition of an uniformly continuous function on a closed interval [a, b].

b. (3 points) Give the proof from lecture that a continuous function on a closed interval [a, b] is bounded.

Problem 4. Evaluate the following limits.

a. (3 points)

$$\lim_{n \to \infty} \left(\frac{2n!}{n! \cdot n^n} \right)^{\frac{1}{n}}.$$

b. (2 points)

lim	$\log(1+x) - x$
$x \rightarrow 0$	$\frac{1}{1-\cos x}$.

DECEMBER 15

Problem 5. Determine whether each series converges. If the series converges, determine whether it converges absolutely.

a. (3 points)

$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n} \right).$$

b. (2 points)

$$\sum_{n=1}^{\infty} \frac{1 - n\sin(1/n)}{n}.$$

Problem 6.

a. (2 points) Determine the degree 5 Taylor polynomial of the function $f(x) = \sin x \cos x^2$.

b. (3 points) Determine the radius of convergence of the series $\sum_{n=1}^{\infty} \frac{n! z^n}{n^n}$.

Problem 7.

a. (2 points) Give the definition of a sequence of functions f_n which converges uniformly to a function f on the interval [a, b].

b. (3 points) Prove that the sequence of partial sums of the series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges uniformly on every closed interval $[a, b] \subset \mathbb{R}$.

Problem 8.

a. (3 points) Let $f(x) = (x - 1/2)^2$ on [0, 1]. Calculate the Fourier coefficients $\hat{f}(n)$ in the Fourier series of f.

b. (2 points) Prove that the series $\sum_{n=-\infty}^{\infty} \hat{f}(n)e^{2\pi i nx}$ converges uniformly to f(x) on [0, 1].