
MATH 141, FALL 2016 MIDTERM 2 SOLUTIONS

NOVEMBER 2

Solve 4 of 6 problems. You may quote results stated during lecture, so long
as you represent the result accurately.
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Problem 1.

a. (2 points) State carefully the definition of a function differentiable at
a point a.

b. (3 points) Let α > 1. If |f(x)| ≤ |x|α, prove that f is differentiable at
0. Let 0 < β < 1. Prove that if |f(x)| ≥ |x|β and f(0) = 0, then f is
not differentiable at 0.

Solution.

a. f is differentiable at a if the limit limx→a
f(x)−f(a)

x−a exists.
b. If |f(x)| ≤ |x|α with α > 1, then |f(0)| = 0 so f(0) = 0. It follows that

for x 6= 0, ∣∣∣∣f(x)− f(0)

x− 0

∣∣∣∣ =
|f(x)|
|x|

≤ |x|α−1.

Since |x|α−1 → 0 as x→ 0, it follows that limx→0
f(x)
x = 0.

If instead for x 6= 0, |f(x)| ≥ |x|β with 0 < β < 1, then
∣∣∣f(x)−f(0)x−0

∣∣∣ ≥
|x|β−1 tends to infinity as x→ 0, so the limit does not exist.
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Problem 2. Suppose that f (n)(a) and g(n)(a) exist. Prove Leibniz’s formula:

(f · g)(n)(a) =
n∑
k=0

(
n

k

)
f (k)(a) · g(n−k)(a).

Solution. The proof is by induction.
Base case n = 0: This is vacuous: f · g(a) = f(a)g(a).
Inductive step: Suppose the conclusion holds for some n ≥ 0. Write

dn+1

dxn+1
(f · g)

∣∣∣∣
x=a

=
d

dx

(
dn

dxn
(f · g)

) ∣∣∣∣∣
x=a

=
d

dx

(
n∑
k=0

(
n

k

)
f (k)(x) · g(n−k)(x)

)∣∣∣∣∣
x=a

.

By linearity of the derivative, then the product rule

dn+1

dxn+1
(f · g)

∣∣∣∣
x=a

=
n∑
k=0

(
n

k

)
d

dx

(
f (k)(x) · g(n−k)(x)

) ∣∣∣∣∣
x=a

=
n∑
k=0

(
n

k

)(
f (k+1)(x)g(n−k)(x) + f (k)(x)g(n+1−k)(x)

) ∣∣∣∣∣
x=a

= f (n+1)(a) + g(n+1)(a)

+
n∑
k=1

((
n

k − 1

)
+

(
n

k

))
f (k)(a)g(n+1−k)(a)

=
n+1∑
k=0

(
n+ 1

k

)
f (k)(a)g(n+1−k)(a).

This completes the inductive step.
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Problem 3.

a. (2 points) State the weighted (non-integral) Jensen’s inequality.
b. (3 points) Using Jensen’s inequality, or otherwise, prove the following

Power Mean Inequality. Let x1, x2, ..., xn ∈ R>0. If 0 < a < b then(
n∏
i=1

xi

) 1
n

≤

(
1

n

n∑
i=1

xai

) 1
a

≤

(
1

n

n∑
i=1

xbi

) 1
b

.

(Hint: set yi = xai to reduce to the case a = 1.)

Solution.

a. Let f be convex on an interval [a, b]. Let x1, x2, ..., xn ∈ [a, b] and let
0 < w1, w2, ..., wn be some positive weights with w1 + ...+ wn = 1. We
have

f (w1x1 + ...+ wnxn) ≤ w1f(x1) + ...+ wnf(xn).

b. Note that x 7→ xa = exp(a log x) is increasing on (0,∞). Thus it is
equivalent to prove(

n∏
i=1

yi

) 1
n

≤ 1

n

n∑
i=1

yi ≤

(
1

n

n∑
i=1

y
b
a

i

)a
b

which is the result of raising each term in the inequalities to that ath
power. The first inequality is the AM-GM inequality, which was verified
in Lecture. Set r = b

a > 1. Then f(x) = xr satisfies

f ′′(x) = r(r − 1)xr−2 > 0

for all x > 0 so f is convex on (0,∞). By Jensen’s inequality with all
weights 1

n , (
1

n

n∑
i=1

yi

)r

≤ 1

n

n∑
i=1

yri

which is equivalent to the second inequality, after raising both sides to
the 1/r power.
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Problem 4. Use integration by parts to derive the recursion formula for
n 6= 0, ∫

cosn xdx =
cosn−1 x sinx

n
+
n− 1

n

∫
cosn−2 xdx.

Solution. Set
u = cosn−1 x, dv = cosxdx

so that
du = −(n− 1) cosn−2 x sinxdx, v = sinx.

Integrate by parts to find∫
cosn xdx = cosn−1 x sinx+ (n− 1)

∫
cosn−2 x sin2 xdx

Use sin2 x = 1− cos2 x to rewrite the RHS as

= cosn−1 x sinx+ (n− 1)

∫
cosn−2 xdx− (n− 1)

∫
cosn xdx

or

n

∫
cosn xdx = cosn−1 x sinx+ (n− 1)

∫
cosn−2 xdx.

Dividing both sides by n gives the claim.
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Problem 5.

a. (3 points) Calculate limn→∞(
√
n2 + n− n).

b. (2 points) Evaluate limx→1 x
1/(1−x).

Solution.

a. Use a2 − b2 = (a+ b)(a− b) to write√
n2 + n− n =

n√
n2 + n+ n

=
1√

1 + 1
n + 1

.

Since
√
x is continuous at 1, it follows that

lim
n→∞

√
n2 + n− n = lim

n→∞

1√
1 + 1

n + 1
=

1

2
.

b. The answer is 1
e . To check this, write

log x1/(1−x) =
log x

1− x
=

log(1− y)

y
.

where y = 1−x. Write log(1−y) = −y+o(y), so limy→0
log(1−y)

y = −1,

whence limx→1 x
1/(1−x) = e−1.
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Problem 6. Prove that, of all rectangles of a given perimeter, the square
has the largest area.

Solution. Let the rectangle have perimeter p with length ` and width w.
Thus 2(w+ `) = p. The area is given by A(`) = `w = `

(
p
2 − `

)
. The problem

reduces to maximize A(`) subject to 0 ≤ ` ≤ p
2 . At both endpoints, the area

is 0. Calculate A′(`) = p
2 − 2`. The only critical point is ` = p

4 , which must

give the maximum. The maximum area is thus p2

16 , which is achieved by a
square of side length p

4 .


