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CHAPTER 1

Introduction

Liouville equations are a class of elliptic nonlinear partial differential
equations of the form

(−∆)nϕ(x) = eϕ(x), x ∈ R2n,

for n ∈ N.1 This family of equations plays a fundamental role in many prob-
lems of Conformal Geometry and Mathematical Physics, as they govern the
transformation laws for some curvatures. For example, the 2-dimensional
equation provides the structure of metrics with constant Gaussian curvature
which are conformal to the restriction of the Euclidean metric to a 2D sur-
face. In Mathematical Physics, Liouville equations appear for example in the
description of mean field vorticity in steady flows ([7], [11]), Chern-Simons
vortices in superconductivity or Electroweak theory ([33], [35]). Moreover,
they also arise naturally when dealing with functional determinants, which
play an essential role in modern Quantum Physics and String theory [28].
The 2-dimensional Liouville equation was also taken as an example by David
Hilbert in the formulation of the “nineteenth problem” [22].

The interest in Liouville equations particularly renewed after the intro-
duction of Q-curvature (see Appendix A) and many authors studied non-
trivial solutions of this class of problems. Classification results for solutions
with with finite “volume” V :=

∫
exp(u) were found in [12] (for the 2D

case) and [26] (for the 4D case). Explicitly, solutions with finite volume in
R4 have been constructed in [34] (a generalization in which one can fix also
the asymptotic behavior of the solution was proved in [27]).

The case in which the integral of the solution is not finite, though, is
still quite unexplored. In my Master’s thesis [1], I proved the existence of
non-trivial solutions with infinite volume in dimension 2, using basic bifur-
cation theory. In that setting, solutions could be found almost explicitly,
allowing us to use the Simple Eigenvalue Bifurcation Theorem [2, Theorem
5.4.1]. Unfortunately, already in dimension 4 we do not have such an explicit
description of the problem, so that the existence of non-trivial solutions in
higher dimensions with infinite volume remained an open question. The
goal of this work is to prove the same result in R4. The philosophy of the
proof will still be finding a trivial solution in some lower dimension and then
using some bifurcation theorem to prove the existence of a non-trivial solu-
tion which is a perturbation of the trivial one. Nonetheless, as everything
will be implicit, the proof will have to resort to quite different techniques.
Specifically, the underlying framework will be the one provided by Degree
Theory (see for instance [29]).

1We will deal only with spaces of even dimension. For the odd-dimensional case,
which is much more difficult as it involves the fractional Laplacian, see [23].
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2 1. INTRODUCTION

In Chapter 2 we will prove the existence of an infinite-volume solution of
the four dimensional Liouville equation not depending on the fourth variable,
i.e. a solution of ∆2u = eu in R3 (Theorem 2.2). We will call this the trivial
solution. Then, in Chapter 3, we will prove that this solution “bifurcates”,
giving a non-trivial solution, again with infinite volume (Theorem 3.7).

Of course, this is not the only way to find non-trivial solutions: indeed,
not even the choice of the trivial solution is unique! For instance, we could
choose to look for a trivial solution not depending on the las two variables
(i.e., a solution of ∆2u = eu in R2) and then find bifurcations of that. The
reason behind choosing to have a trivial solution in R3 is that in this way
we have to deal with just one parameter when using bifurcation results.

Remark. Notice that choosing to have a trivial solution in dimension
1 leads nowhere. Indeed, we would be looking for solutions of the ODE

u(4)(x) = eu(x), ∀x ∈ R.
Integrating this equation, one immediately finds

u(3)(y)− u(3)(x) =
∫ y

x
eu(s) ds > 0, ∀x, y ∈ R, x 6= y,

which means that limx→−∞ u
(3)(x) < limx→+∞ u

(3)(x). But this is a con-
tradiction: as we are requiring that u goes to −∞ both at −∞ and +∞,
indeed, we should have limx→−∞ u

(3)(x) ≥ 0 and limx→+∞ u
(3)(x) ≤ 0.



CHAPTER 2

Trivial solution

Our first goal is to show that there exists at least one solution of

(1)

∆2u = eu in R3∫
R3 eu(x) dx < +∞

.

The proof will be done in two steps and will look in particular for solutions
of the integral form of (1), namely solutions of the form

u(x) = − 1
8π

∫
R3
|x− y|eu(y) dy.

Observe that a u with finite volume satisfying this last expression is a so-
lution of (1). Indeed, a fundamental solution to ∆2 is G(x) = − 1

8π |x| (see
[13]). I am much in debt with Dr. Ali Hyder for the big suggestions he gave
me for this part.

Lemma 2.1. Let

X :=
{
u ∈ C0(R3)

∣∣∣u is radially symmetric and ‖u‖ < +∞
}
,

where ‖u‖ := supx∈R3
|u(x)|
1+|x| . Then for every ε > 0 there exist uε ∈ X such

that

(2) uε(x) = − 1
8π

∫
R3
|x− y|e−ε|y|2euε(y) dy.

Proof. First of all, observe that X, endowed with the norm ‖·‖, is a
well-defined Banach space. Define then

Tε : X −→ X

u 7−→ ūε, ūε(x) := − 1
8π

∫
R3
|x− y|e−ε|y|2eu(y) dy

.

Tε is well defined. Take in fact u ∈ X, then ūε ∈ C0(R3) thanks to the
Lebesgue Dominated Convergence Theorem. Moreover, ūε is clearly radial
because of the radial invariance of the Lebesgue integral: indeed, if A ∈
SO(3), then

ūε(Ax) = − 1
8π

∫
R3
|Ax− y| e−ε|y|2eu(y) dy

= − 1
8π

∫
R3
|A(x− y)| e−ε|Ay|2eu(Ay)| detA|dy

= − 1
8π

∫
R3
|x− y| e−ε|y|2eu(y) dy = ūε(x).

3



4 2. TRIVIAL SOLUTION

Finally,

|ūε(x)| = 1
8π

∫
R3
|x− y| e−ε|y|2eu(y) dy

≤ 1
8π

∫
R3
|x− y| e−ε|y|2e‖u‖(1+|y|) dy

≤ 1
8π

∫
R3
|y|e−ε|y|2e‖u‖(1+|y|) dy + |x| 1

8π

∫
R3

e−ε|y|2e‖u‖(1+|y|) dy

≤ C1 + C2|x| ≤ C̄(1 + |x|),

so that ‖ūε‖ < +∞. Hence Tε(u) = ūε ∈ X.
We now show that Tε is compact. Take a bounded sequence {un}n ⊂ X,

‖un‖ ≤ C < +∞ for all n ∈ N. We want to show that then {Tε(un)}n admits
a converging subsequence. The idea is to use Arzelà-Ascoli’s Theorem on
the sequence

{
Tε(un)
1+|x|

}
n
. First,

|Tε(un)|
1 + |x| = 1

8π(1 + |x|)

∫
R3
|x− y| e−ε|y|2eun(y) dy

≤ 1
8π(1 + |x|)

∫
R3
|x− y| e−ε|y|2eC(1+|x|) dy

≤ C1 + C2|x|
8π(1 + |x|) ≤ C̄ < +∞,

for any x ∈ R3 and n ∈ N, so that
{
Tε(un)
1+|x|

}
n

is uniformly bounded. More-
over,

∣∣∣∣∣Tε(un(x))
1 + |x| −

Tε(un(y))
1 + |y|

∣∣∣∣∣ = 1
8π

∣∣∣∣∣∣
∫
R3

(
|x− z|
1 + |x| −

|y − z|
1 + |y|

)
e−ε|z|2eun(z) dz

∣∣∣∣∣∣
≤ 1

8π

∫
R3

∣∣∣∣∣ |x− z|1 + |x| −
|y − z|
1 + |y|

∣∣∣∣∣ e−ε|z|2eun(z) dz

≤
( 1

8π

∫
R3

(2 + |z|)e−ε|z|2eC(1+|z|) dz
)
|x− y|

for any x, y ∈ R3 and n ∈ N, so that
{
Tε(un(x))

1+|x|

}
n

is equicontinuous. The
last inequality, in particular follows from the triangular inequality. As one
clearly has

|y| ≤ |x|+ |y − x|,
|x− z| ≤ |x− y|+ |y − z|,
|z| ≤ |x|+ |z − x|,

|x− z| ≤ |x|+ |z|,
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we obtain indeed∣∣∣∣∣ |x− z|1 + |x| −
|y − z|
1 + |y|

∣∣∣∣∣ =
∣∣∣∣∣ |x− z| − |y − z|+ |y||x− z| − |x||y − z|(1 + |x|)(1 + |y|)

∣∣∣∣∣
≤ |x− y|+ (|x|+ |y − x|)|x− y| − |x||y − z|

(1 + |x|)(1 + |y|)

≤ |x− y|+ |x||x− y|+ |x− z||x− y|(1 + |x|)(1 + |y|)

≤
(

1 + 2|x|
(1 + |x|)(1 + |y|) + |z|

(1 + |x|)(1 + |y|)

)
|x− y|

≤
(

2
(1 + |y|) + |z|

(1 + |x|)(1 + |y|)

)
|x− y|

≤ (2 + |z|)|x− y|.

By Arzelà-Ascoli’s Theorem, then,
{
Tε(un(x))

1+|x|

}
n

admits a subsequence which
converges uniformly. Thus, {Tε(un)}n admits a converging subsequence in
(X,‖·‖) and therefore T is a compact operator.

Next, we prove that T has a fixed point using Schaefer’s Fixed Point
Theorem (see for example [36]). Let u ∈ X satisfy u = tTε(u) for some
0 ≤ t ≤ 1, then

u(x) = − t

8π

∫
R3
|x− y|e−ε|y|2eu(y) dy ≤ 0.

Consequently

|u(x)| ≤ t

8π

∫
R3
|x− y|e−ε|y|2 dy ≤ C(1 + |x|)

and therefore ‖u‖ ≤ C. That means that the set {u ∈ X | u = tTε(u), 0 ≤
t ≤ 1} is bounded in (X,‖·‖): by Schaefer’s Theorem then Tε has a fixed
point in X. �

Theorem 2.2. uε converges to some u in (X,‖·‖) as ε goes to 0, with u
satisfying

u(x) = − 1
8π

∫
R3
|x− y|eu(y) dy

(hence being a solution of (1) with the desired properties).
Proof. First of all, we check that uε is monotone decreasing for each

ε > 0. Indeed, write the integral in uε in polar coordinates (with a slight
abuse of notation)

uε(r) = − 1
8π

2π∫
ϕ=0

π∫
θ=0

+∞∫
s=0

√
r2 − 2rs cos θ + s2e−εs2euε(s)s2 sin θ ds dθ dϕ

= − 1
12r

∫ +∞

0
(r2 − 2rs cos θ + s2)

3
2

∣∣∣θ=π

θ=0
e−εs2euε(s)s ds

= − 1
12r

∫ +∞

0

[
(r + s)3 − |r − s|3

]
e−εs2euε(s)s ds

= − 1
6r

∫ r

0
s2(3r2 + s2)e−εs2euε(s) ds− 1

6

∫ +∞

r
s(r2 + 3s2)e−εs2euε(s) ds.
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In the previous computation we set y = (s sin θ cosϕ, s sin θ sinϕ, s cos θ)
and we chose x = (r, 0, 0) (recall that we have already checked the radial
invariance). Now take a derivative in r:

u′ε(r) = 1
6r2

∫ r

0
s2(3r2 + s2)e−εs2euε(s) ds− 2

3r
3e−εr2euε(r)

−
∫ r

0
s2e−εs2euε(s) ds+ 2

3r
3e−εr2euε(r)

− 1
3

∫ +∞

r
rse−εs2euε(s) ds

=
∫ r

0

s2 − 3r2

6r2︸ ︷︷ ︸
<0

s2e−εs2euε(s) ds− r

3

∫ +∞

r
se−εs2euε(s) < 0.

Hence uε is monotone decreasing for all ε > 0.
Applying Pohozaev’s identity to (2) one gets∫

R3

(
uε(x) + 6− 4ε|x|2

)
e−ε|x|2euε(x) dx = 0.

Since uε is monotone decreasing and continuous, we must have uε(0) > −6
(otherwise the previous integral would be strictly negative). Hence −6 <
uε(0) < 0: applying that to (2) we get∣∣∣∣∫

R3
|y|e−ε|y|2euε(y) dy

∣∣∣∣ ≤ 6

and thus

(3)
∣∣∆uε(0)

∣∣ = 1
4π

∣∣∣∣∣
∫
R3

1
|y|

e−ε|y|2euε(y) dy
∣∣∣∣∣ ≤ C < +∞.

By Green’s formula indeed

∆uε(x) = − 1
4π

∫
R3

1
|x− y|

e−ε|y|2euε(y).

We now check that ∆uε is monotone increasing for each ε > 0. Indeed,
using again polar coordinates as before,

(∆uε)(r) = − 1
4π

2π∫
ϕ=0

π∫
θ=0

+∞∫
s=0

e−εs2euε(s)s2
√
r2 − 2rs cos θ + s2

sin θ ds dθ dϕ

= − 1
2r

∫ +∞

0

√
r2 − 2rs cos θ + s2

∣∣∣θ=π

θ=0
s e−εs2euε(s) ds

= − 1
2r

∫ +∞

0

[
(r + s)− |r − s|

]
s e−εs2euε(s) ds

= −1
r

∫ r

0
s2e−εs2euε(s) ds−

∫ +∞

r
s e−εs2euε(s) ds,

one sees that the derivative in r is positive:

(∆uε)′(r) = 1
r2

∫ r

0
s2e−εs2euε(s) ds− r e−εr2euε(r) + r e−εr2euε(r)

= 1
r2

∫ r

0
s2e−εs2euε(s) ds > 0.
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Now, by monotonicity of ∆uε and because ∆uε < 0 and (3) hold, we have
‖∆uε‖L∞(R3) ≤ C < ∞. Therefore uε goes to some radial u in C4

loc(R3),
because of elliptic estimates.

At this point it suffices to check that there exists some δ > 0, indepen-
dent on ε, such that uε(x) ≤ δ(1 − |x|) for all ε > 0. Indeed, that shows
that the limit grows at most linearly and that

u(x) = − 1
8π

∫
R3
|x− y|eu(y) dy.

Indeed, ∣∣∣|x− y|e−ε|y|2euε(y)
∣∣∣ ≤ |x− y|eδ(1−|y|) ∈ L1(R3),

so that by Lebesgue’s Dominated Convergence Theorem

u(x) = lim
ε→0

uε(x) = − 1
8π lim

ε→0

∫
R3
|x− y|e−ε|y|2euε(y) dy

= − 1
8π

∫
R3
|x− y|euε(y) dy.

Let us check then that such a δ > 0 exists. Observe preliminarly that
|uε(x)| ≤ ‖uε‖ (1 + |x|) and uε(x) < 0 for all x ∈ R3 imply that uε(x) ≥
−‖uε‖ (1 + |x|) for all x ∈ R3. Therefore

−‖uε‖ (1 + |x|) ≤ uε(x) = − 1
8π

∫
R3
|x− y|e−ε|y|2euε(y) dy

≤ − 1
8π

∫
|y|<1

|x− y|e−ε|y|2euε(y) dy

≤ − 1
8π

∫
|y|<1

|x− y|e−ε|y|2e−‖uε‖(1+|y|) dy

≤ − 1
8π

(∫
|y|<1

|x− y|dy
)

e−2‖uε‖−1.

Now, if for the sake of contradiction we suppose that ‖uε‖ goes to zero, on
the left hand side we would have something going pointwise to zero, while
on the right hand side we would have something going poinwise to some
strictly negative function of x, which is a contradiction. Hence it is true
that there exists some C > 0 such that ‖uε‖ ≤ C for all ε > 0. Thus

uε(x) ≤ − C8π

∫
|y|<1

|x− y| dy ≤ δ(1− |x|),

for some δ > 0. This completes the proof. �

To sum up, we have just showed the existence of a solution u0 to the
Liouville equation in R4 which is radial with linear decay in the first three
coordinates and does not depend on the last one.

Remark. Observe that, if u1(x) is a solution of ∆2u = eu, then
uµ(x) = u1(µx) + 4 logµ

is a solution as well. Therefore, actually, we have shown the existence of
a whole family of trivial solutions. Once a trivial solution with the afore-
mentioned properties u1 is fixed, uλ can be characterized equivalently by its
volume

∫
R3 euλ , its value in 0 or its asymptotic behavior.





CHAPTER 3

Non-trivial solution

Now that we have a family of trivial solutions we can start looking at
bifurcations. We will restrict our problem to the strip Sλ := R3× (0, λ) and
find the values of λ for which the solution is not unique. For these values of
λ, we will have then non-trivial solutions in the strip Sλ. Extending them to
the whole plane R4 by reflection and using elliptic regularity, this will give
a non-trivial solution with infinite volume.

Definition. We say that λ∗ is a bifurcation point for F (from the trivial
solution) if there is a sequence of solutions (λn, un)n∈N ⊂ R×X, with un 6= 0
for each n ∈ N, that converges to (λ∗, 0).

Observe that then, in order to prove non-uniqueness, it suffices to find
a bifurcation point λ∗. To this end, we will use Krasnosel’skii’s Index The-
orem:

Theorem 3.1. [25, Theorem 56.2] Let A be a completely continuous
operator and assume that λ∗ is a point where the index of u−A(λ, u) changes.
Then λ∗ is a bifurcation point for equation u = A(λ, u).

To start, we need to fix the spaces of functions we are working in. Denote
u(x1, x2, x3, x4) = u(x, x4) (i.e., x = (x1, x2, x3)) and define

Xλ :=


u ∈ C4,α(Sλ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂

∂x4
u(x, 0) = ∂

∂x4
u(x, λ) = 0 ∀x ∈ R3,

u radial in x,∣∣∣〈x〉 1
2u
∣∣∣
4,α,Sλ

+
∣∣∣〈x〉 5

2 ∆u
∣∣∣
2,α,Sλ

+
∣∣∣〈x〉 9

2 ∆2u
∣∣∣
0,α,Sλ

< +∞


,

where 〈x〉 :=
√

1 + x2. Define also

Yλ :=


f ∈ C0,α(Sλ)

∣∣∣∣∣∣∣∣∣∣∣

∂

∂y
f(x, 0) = ∂

∂y
f(x, λ) = 0 ∀x ∈ R3,

f radial in x,∣∣∣〈x〉 9
2 f
∣∣∣
0,α,Sλ

< +∞


.

Recalling that the interior Hölder spaces are Banach spaces ([18, Problem
5.2]), it can be checked that both Xλ and Yλ are Banach spaces when en-
dowed, respectively, with the norms

‖u‖Xλ :=
∣∣∣〈x〉 1

2u
∣∣∣
4,α,Sλ

+
∣∣∣〈x〉 5

2 ∆u
∣∣∣
2,α,Sλ

+
∣∣∣〈x〉 9

2 ∆u
∣∣∣
0,α,Sλ

9
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(the only point here is to show that ∆un → f = ∆u and ∆2un → g = ∆2u,
but this true because un converges in C4) and

‖f‖Yλ :=
∣∣∣〈x〉 9

2 f
∣∣∣
0,α,Sλ

.

Observe moreover that the functions in Xλ grow at most like |x|−
1
2 , while

those in Yλ grow at most like |x|−
9
2 , and thus Xλ, Yλ ⊂ L2(Sλ). Notice

also that perturbing the trivial solution with functions in Xλ preserves the
growth at infinity2.

Our problem is then finding zeros of the following functional:
Fλ : Xλ −→ Yλ

u 7−→ ∆2(u0 + u)− eu0+u = ∆2u− eu0(eu − 1).
At this point one should notice that the equation we get in this way

is not in the form of Krasnosel’skii’s Theorem 3.1. Indeed, the operator is
not in the required form I − K, with K compact. Nonetheless, one can
overcome this hurdle as follows. Suppose that we can invert the operator
∆2 : Xλ → Yλ. Then, instead of
(4) ∆2u− eu0(eu − 1) = 0,
one could consider the equation
(5) u−∆−2(eu0(eu − 1)) = 0.
Notice that u is a solution of the original equation if and only if it is a solution
of this second equation (because we are assuming that ∆2 is invertible).
Hence, instead of solving (4), we will deal with (5). The advantage obtained
in this way is that now one can show that (5) is in the form required, namely
∆−2 ◦ Fλ : Xλ → Xλ is a compact perturbation of the identity.

1. Invertibility of Laplacian and compactness

The first thing we need to prove is that ∆−2 ◦ Fλ : Xλ → Xλ is well
defined.

Lemma 3.2. ∆2 : Xλ → Yλ is invertible. Consequently, ∆−2 ◦L : Xλ →
Xλ is well defined.

Proof. Let

Zλ :=


w ∈ C2,α(Sλ)

∣∣∣∣∣∣∣∣∣∣∣

∂

∂y
w(x, 0) = ∂

∂y
w(x, λ) = 0 ∀x ∈ R3,

w radial in x,∣∣∣〈x〉 9
2w
∣∣∣
2,α,Sλ

+
∣∣∣〈x〉 5

2 ∆w
∣∣∣
0,α,Sλ

< +∞


.

Notice that ∆ maps Xλ to Zλ and maps Zλ to Yλ, by construction. There-
fore, it will be enough to prove that (with a slight abuse of notation) both
∆ : Xλ → Zλ and ∆ : Zλ → Yλ are invertible.

Similarly to Xλ and Yλ, Zλ is a Banach space contained in L2(Sλ). Con-
sider first ∆ : Xλ → Zλ: it is a linear self-adjoint operator (with respect

2Here the essential hypothesis is that the functions go to zero at infinity. Therefore,
the choice of the power − 1

2 is quite arbitrary and could be replaced by any power ε < 0.



1. INVERTIBILITY OF LAPLACIAN AND COMPACTNESS 11

to the L2 product), so that it suffices to show that ker ∆ ⊆ Xλ is trivial.
Indeed, this will imply that ∆ is injective and surjective, because the oper-
ator is self-adjoint and thus both the image and the cokernel are contained
in the domain, by elliptic regularity. But then ∆ will be a bijective map
between the Banach spaces Xλ and Zλ which is continuous by construction,
so that it will have a continuous inverse by the Open Mapping Theorem [6,
Corollary 2.7].

To begin with, suppose that u(x, x4) = uk(x) cos
(
kπ
λ x4

)
∈ ker ∆, where

x stands for (x1, x2, x3). Write the Laplacian as ∆ = ∆x + ∂2

∂x2
4
, where ∆x

is the Laplacian in the first three coordinates only. Then one gets

0 = ∆

uk(x) cos
(
kπ

λ
x4

)
=
(

∆xuk(x)− 2k
2π2

λ2 uk(x)
)

cos
(
kπ

λ
x4

)
,

so that u ∈ ker ∆ if and only if
(
∆x − k2π2

λ2

)
uk(x) = 0. Now, if k = 0,

then the equation becomes ∆xu0(x) = 0. Recalling that u0(x) is radial, the
problem reduces to solving

w′′(r) + 2
r
w′(r) = 0, r > 0,

where u0(x) = w(|x|). Solutions of this equation are functions of the form
w(r) = a + b

r , so that the only way u0(x) = w(|x|) satisfies the growth
requirements at infinity and continuity at the origin is to have a = b = 0,
i.e u0 = 0.

Let now k 6= 0, so that we have the equation ∆xuk(x) = k2π2

λ2 uk(x).
Suppose that uk attains a maximum at x = xM ∈ R3, then ∆xuk(xM ) ≤ 0
implies that uk(x) ≤ uk(xM ) ≤ 0 for all x ∈ R3. If instead uk has no interior
maximum, then it must be at infinity, and thus uk(x) ≤ 0 for all x ∈ R3,
because according to our choice of Xλ we have uk(x) → 0 as |x| → +∞.
Similar considerations with the minimum of uk lead to uk(x) ≥ 0 for all
x ∈ R3. But then uk = 0 also for k 6= 0.

Given now any u(x, x4) in the kernel of the Laplacian, the previous
argument shows then that all coefficients of its Fourier expansion in x4 are
forced to be zero. Therefore, u = 0 and thus ker ∆ = 0, proving that
∆ : Xλ → Zλ is invertible with continuous inverse.

The same argument proves that ∆ : Zλ → Yλ is invertible with contin-
uous inverse, so that ∆2 = ∆ ◦ ∆ : Xλ → Yλ is invertible with continuous
inverse. �

As for compactness, notice that the operator ∆−2 ◦ Fλ already has the
form I −K, with K(u) = ∆−2(eu0(eu − 1)).

Lemma 3.3. K : Xλ → Xλ is a compact operator.

Proof. Using the same notation of the previous Lemma, we have ∆−2f =
G ∗ f . Here, the important property of G is that it grows slower than the
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exponential as |x| → +∞ (see again [13]). Then the result follows from
repeated application of Arzelà-Ascoli’s Theorem.

Let indeed {uk}k be a bounded sequence in Xλ, i.e. ‖uk‖Xλ ≤ C for all
k ∈ N for some C < +∞ independent on k. Then, for any x ∈ Sλ,

|K(uk)(x)| =
∣∣∣∣∣
∫
Sλ

G(x− y)eu0(y)(eu(y) − 1) dy
∣∣∣∣∣ ≤ Cx,

because eu0(y) goes to zero as e−|y| for |y| → +∞ (so, it goes to zero much
faster than how all other terms go to infinity), making the integral converge
for all x ∈ Sλ. Therefore, {K(uk)}k is uniformly bounded. Similarly, for all
x ∈ Sλ, one has∣∣∇K(uk)(x)

∣∣ ≤ ∫
Sλ

|∇G(x− y)|eu0(y)
∣∣∣eu(y) − 1

∣∣∣ dy ≤ C ′x,
again because eu0(y) goes to zero as e−|y| and all the other terms do not grow
exponentially to infinity. Hence, {K(uk)}k is also equicontinuous and thus,
by Arzelà-Ascoli, it converges up to subsequences in the C0 norm.

The same argument applied to the derivatives ofK(uk) gives convergence
in all Cj norms (because we can make the derivative fall on G and apply
the same argument as before), and thus in particular in the C4,α norm.
Moreover, we have already seen that all the K(uk)’s satisfy the growth
requirements, so that {K(uk)}k has a converging subsequence in the Xλ

norm, proving compactness of K. �

Remark. The exact same argument proves also that the linearization
∆−2 ◦ L has the form I −K with K a compact operator.

2. Change of index and bifurcation

Now that the setup of our problem is complete, we can move to actually
proving bifurcation. As explained at the beginning of this chapter, we plan
to use Krasnosel’skii’s Bifurcation Theorem 3.1, so that we need to prove
that the index of the operator ∆−2 ◦ Fλ changes for some λ, i.e. that the
dimension of the negative space of its linearization ∆−2 ◦ Lλ changes for
some λ.

Lemma 3.4. The linearized operator

Lλ[v] := ∆2v − eu0v

admits an eigenfunction not depending on x4 and with negative eigenvalue.

Proof. Observe that Lλ can be restricted to an operator

L̃λ := Lλ|X0
λ

: X0
λ → Yλ,

whereX0
λ is the subset ofXλ of functions not depending on x4. The functions

in X0
λ are then actually functions of R3, so in the rest of this proof we will

just drop the dependence on x4.
We construct a function v : R3 → R that is compactly supported, radial

and such that 〈L̃λv, v〉L2 < 0.
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Define

f(r) :=


0 if r ≤ 1
e−

1
(r−1)2 e−

1
(r−2)2 if 1 < r < 2

0 if r ≥ 2
and take

v(x1, x2, x3) := 1
A

∫ +∞
√
x2

1+x2
2+x2

3

f(s) ds,

with
A :=

∫ +∞

0
f(s) ds.

Notice that v is bounded with compact support, so that it belongs to the
space of functions X0

λ. Observe also that v is constantly equal to 1 if r :=√
x2

1 + x2
2 + x2

3 < 1 and is identically 0 outside the ball B3(0, 2), so that its
Laplacian is different from zero only in the annulus 1 ≤ r ≤ 2. Therefore,
setting

V

(√
x2

1 + x2
2 + x2

3

)
:= v(x1, x2, x3),

one gets∫
Sλ

(∆v)2 dx = λ

∫ 2

1

(
V ′′(r) + 2

r
V ′(r)

)2
4πr2 dr = C < +∞.

Fix now a trivial solution u1, as found in Chapter 2. Recall that we thus
have the family {uµ}µ of trivial solutions (as the functions in this family do
not depend on x4, they be tought as a functions on R3). We will then show
that we can choose u0 ∈ {uµ}µ so that∫

Sλ

eu0(x)[v(x)]2 dx

is sufficiently large. In fact∫
Sλ

euµ(x)[v(x)]2 dx = λ

∫
R3
µ4eu1(µx) dx

= λ

∫
R3
µ4eu1(y)v2

(
y

µ

)
dy
µ3 ≥ λµ

∫
|y|≤µ

eu1(y) v2
(
y

µ

)
︸ ︷︷ ︸

1

dy

= λµ

∫
|y|≤µ

eu1(y) dy −→
µ→+∞

+∞

Summing up, if we fix u0 := uµ with µ sufficiently large, then 〈L̃λv, v〉L2 < 0,
with v the function defined before.

Now, as X0
λ ⊂ L2(R3), we get that L̃λ is self-adjoint and semibounded

(in the L2 norm):

〈L̃λv, v〉L2 =
∫
R3

[(
∆2v(x)

)
v(x)− eu0(x)v2(x)

]
dx

=
∫
R3

[(
∆v(x)

)2 − eu0(x)v2(x)
]

dx

≥ −
∫
R3

eu0(x)v2(x) dx ≥ −eu0(0)‖v‖L2(R3) .
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Hence we have that the lowest eigenvalue for L̃λ is

ν0 = min
u6=0

〈L̃λu, u〉L2

‖u‖2L2
≤ 〈L̃λv, v〉L2

‖v‖2L2
< 0

(see for example [21, Theorem 11.4]). Notice that ν0 is an eigenvalue of
Lλ : Xλ → Yλ as well (possibly not the first one) because X0

λ ⊂ Xλ and that
a corresponding eigenfunction v0 ∈ X0

λ is an eigenfunction of Lλ (extending
it trivially in x4). Note that v0 does not depend on x4 and ν0 < 0, as
required. �

This negative eigenfunction v0 for Lλ (not depending on x4) is negative
also for ∆−2 ◦ Lλ (even if not necessarily an eigefunction):

〈(∆−2 ◦ Lλ)w0, w0〉L2 = µ0〈∆−2w0, w0〉L2 = µ0
∥∥∥∆−1w0

∥∥∥2

L2
< 0,

where the last equality comes from self-adjointness of ∆−1, while the strict
inequality comes from the fact that, if

∥∥∥∆−1w0
∥∥∥
L2

= 0, then ‖w0‖L2 = 0, a
contradiction.

Remark. As this function v0 does not depend on the last variable x4,
it is independent on the choice of λ. Therefore, in what follows, even if the
family of functions that we construct depends on λ, the way we construct it
does not. For ease of notation, we will not explicitly indicate the dependence
of the family of functions on λ.

We now want to prove that we have a family of linearly independent
functions in the negative space of Lλ that gets bigger as λ get larger. For a
fixed λ, consider the functions

vk(x1, x2, x3, x4) := v0(x1, x2, x3) cos
(

2πk
λ
x4

)
.

Observe that the vk’s are orthogonal and satisfy Neumann conditions on
∂Sλ, so that they belong to Xλ.

Lemma 3.5. The number of values of k for which 〈(∆−2 ◦Lλ)vk, vk〉L2 <
0 is finite for all λ > 0 and goes to infinity as λ→ +∞.

Proof. Recall first that we already know that 〈(∆−2 ◦Lλ)v0, v0〉L2 < 0.
We also have

〈(∆−2 ◦ Lλ)vk, vk〉L2 = 〈vk −∆−2(eu0vk), vk〉L2

=‖vk‖2L2 − 〈∆−2(eu0vk), vk〉L2

=‖v0‖2L2 − 〈eu0vk,∆−2vk〉L2 ,

(6)

where ‖vk‖L2 =‖v0‖L2 because
∫ λ

0 cos2
(

2πk
λ x4

)
dx4 = 1.

We now have to compute ∆−2vk explicitly. Set w = ∆−2vk, i.e. w is
the solution of ∆2w = vk. Decomposing w into its Fourier modes in the x4
variable we get

w(x, x4) =
+∞∑
n=0

wk(x) cos
(

2πk
λ
x4

)
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and thus

v0(x) cos
(

2πk
λ
x4

)
=

+∞∑
n=0

[(
∆x −

2πn
λ

)2
wk(x)

]
cos

(2πn
λ
x4

)
.

For the same maximum principle argument of the previous section, the op-
erators

(
∆x − 2πn

λ

)2
are invertible, and so we get

∆−2vk(x, x4) =

(∆x −
2πk
λ

)−2

v0(x)

 cos
(

2πk
λ
x4

)
.

Plugging this into (6), we then obtain

〈(∆−2 ◦ Lλ)vk, vk〉L2 =‖v0‖2L2 −
〈

eu0v0,

(
∆x −

2πk
λ

)−2

v0

〉
L2

.

Consider now the function f : R>0 → R defined as

f(t) :=‖v0‖2L2 −
〈

eu0v0, (∆x − t)−2v0
〉
L2
.

This is a continuous map, because the map that takes an invertible oper-
ator to its inverse is continuous in the operator norm [2, Prop. 2.1.1]. By
construction

f(0) =‖v0‖2L2 −
〈

eu0v0,∆−2v0
〉
L2

= 〈(∆−2 ◦ Lλ)v0, v0〉L2 < 0,

so that f(t) < 0 for all t < ε for some ε > 0. Notice that the number of
k’s for which t = 2πk

λ < ε grows with λ. Therefore, to conclude that the
number of k’s such that 〈(∆−2 ◦ Lλ)vk, vk〉L2 < 0 grows with λ, it suffices
to prove that for all fixed λ > 0 there are only finitely many k’s for which
〈(∆−2 ◦ Lλ)vk, vk〉L2 < 0. This is equivalent to say that there exists M > 0
such that f(t) > 0 for all t > M . Specifically, we are going to prove that
f(t)→‖v0‖2 > 0 as t→ +∞.

Fix indeed u ∈ Xλ independent on x4, then
∥∥∥(∆x − t)2u

∥∥∥
C0
∼ |u|C0t2 as

t→ +∞ (recall that |∆2
xu|C0 , |∆xu|C0 < +∞ are fixed). Then∥∥∥(∆x − t)−2v0

∥∥∥
C0
→ 0, t→ +∞,

decreasing like t−2. Recalling that eu0v0 ∈ L1, we conclude then that∣∣∣∣〈eu0v0, (∆x − t)−2v0
〉
L2

∣∣∣∣ ≤‖eu0v0‖L1

∥∥∥(∆x − t)−2v0
∥∥∥
C0
→ 0

as t→ +∞. Thus f(t)→‖v0‖2L2 when t→ +∞, as wanted. �

Lemma 3.6. The dimension of the negative space of ∆−2 ◦ Lλ grows as
λ grows.

Proof. Fix λ and suppose that v0, . . . , vr are the negative functions for
Lλ of Lemma 3.5.

Notice first that, if vi, vj are negative for ∆−2 ◦Lλ, then any their linear
combination αvi + βvj is negative as well. Indeed: if i = j this is trivial,
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while if i 6= j then
〈∆−2 ◦ Lλ(αvi + βvj), αvi + βvj〉L2

= α2〈(∆−2 ◦ Lλ)vi, vi〉L2 + β2〈(∆−2 ◦ Lλ)vj , vj〉L2

+ αβ〈(∆−2 ◦ Lλ)vi, vj〉L2 + αβ〈(∆−2 ◦ Lλ)vj , vi〉L2

and
〈(∆−2 ◦ Lλ)vi, vj〉L2

= 〈vi, vj〉L2

−
〈

eu0v0(x) cos
(2πi
λ
x4

)
,

[(
∆x −

2πj
λ

)−2
v0(x)

]
cos

(2πj
λ

)〉
L2

= 0,

because
∫ λ

0 cos
(

2πi
λ x4

)
cos

(
2πj
λ x4

)
dx4 = 0 for i 6= j, so that

〈∆−2 ◦ Lλ(αvi + βvj), αvi + βvj〉L2

= α2〈(∆−2 ◦ Lλ)vi, vi〉L2 + β2〈(∆−2 ◦ Lλ)vj , vj〉L2 < 0.
Then, by Rayleigh Min-Max principle [16, Theorem 12.1] the first r

eigenvalues of Lλ are negative: for n ≤ r we have
νn = min

ϕ1,...,ϕn
max{〈Lλϕ,ϕ〉L2 | ϕ ∈ span(ϕ1, . . . , ϕn), ‖ϕ‖L2 = 1}

≤ max{〈Lλϕ,ϕ〉L2 | ϕ ∈ span(v1, . . . , vn), ‖ϕ‖L2 = 1} < 0.
As for each of this eigenvalues νk (counted with multiplicity) there is an
eigenfunction linearly independent to the previous ones, we conclude that
the dimension of the negative space of ∆−2 ◦Lλ must grow with λ. Indeed,
Lemma 3.5 tells us that the number of elements in the negative family of
functions grows with λ, and thus, for bigger λ, Rayleigh Min-Max principle
gives us more negative eigenvalues. �

Lemma 3.6, along with the fact that ∆−2 ◦ L = I −K (where I is the
identity and K is a compact operator), shows that there must be some value
λ∗ of the parameter λ for which the number of negative eigenvalues changes.
Indeed, notice that f is an eigenfunction of −K with eigenvalue µ if and
only if f is an eigenfunction of I −K with eigenvalue 1 + µ. Recalling that
the spectrum of the compact operator −K is bounded and accumulating at
most in 0 [21, Theorem 6.16], we then get that the spectrum of I − K is
bounded and accumulating at most in 1. In both cases, this implies that
there are only finitely many negative eigenvalues, for each fixed value of λ.
But, according to Lemma 3.6, the number of negative eigenvalues goes to
infinity as λ → +∞. Consequently, there must be some λ∗ for which the
number of negative eigenvalues changes. But then at λ∗ the dimension of
the space of negative eigenfunctions grows, so that λ∗ is a point of changing
index for the operator ∆−2 ◦ Fλ.

Now we can finally apply Krasnosel’skii’s Bifurcation Theorem 3.1 to the
equation ∆−2 ◦ Fλ(u) = 0. Indeed, we proved that ∆−2 ◦ Fλ has the form
I −K with K compact, and that λ∗ is a point of changing index. Hence, λ∗
is a point of bifurcation for ∆−2 ◦Fλ. This means that there is a non-trivial
solution of ∆−2 ◦ Fλ(u) = 0 for some λ which is a perturbation of u0, i.e. a
zero of Fλ on Sλ. We can then extend u to the whole R4 by reflecting it
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along the boundaries of the strip and repeating this procedure. Weighted
elliptic regularity then implies that this is still a solution of the Liouville
equation (apply twice the results found in [1, Chapter 3]). As this solution
is periodic and non-zero, it must then have infinite volume

∫
R4 eu = +∞.

We have then proved the following result.

Theorem 3.7. The Liouville equation ∆2u = eu in R4 admits a non-
trivial solution u ∈ C4,α(R4) with infinite volume.

3. Conclusions and further research

This work shows the existence of non-trivial solutions of the Liouville
equation in R4 with infinite volume. As already remarked, though, this is
far from being the only way of finding such solutions. For instance, one
could try to follow the same procedure with a trivial solution in R2 and
two parameters, but even this does not exhaust all possibilities. Another
option, indeed, might be to bifurcate radially. Moreover, similarly to what
appens for Delaunay surfaces [15] (whose equations are somehow analogous
to the ones we are considering), we might be able to connect the non-trivial
solutions of Theorem 3.7 to the spherical solution by some global bifurcation
theorem, maybe following the ideas of [14].

Another aspect worth consideration is, of course, going to higher dimen-
sions. As the methods emplyed here are quite general, it seems reasonable to
believe that the same argument we followed can be quite easily generalized
to any even dimension.

Finally, other lines of research aimed at finding more general non-trivial
solutions with infinite volume are possible. For instance, we might be able
to “glue” the oscillating solutions obtained from the bifurcation into more
complex solutions, in a similar manner to the one used to construct Delaunay
k-noids starting from Delaunay unduloids and nodoids. In this way we could
then obtain non-trivial solutions with infinite volume that are not a direct
result of a bifurcation from a cylindrical solution.





APPENDIX A

Q-curvature

In this appendix we will briefly explain how Liouville equations arise
in Differential Geometry. In 1985 Thomas P. Branson introduced the con-
cept of Q-curvature [3], a quantity that turned out to be very important in
many contexts and that can be regarded as a generalization of the Gauss-
ian curvature. For example, Q-curvature appears naturally when studying
the functional determinant of conformally covariant operators3, which plays
an essential role both in Functional Analysis and in Theoretical Physics.
Indeed, for example on a four-manifold, given a conformally covariant op-
erator Ag (like the conformal Laplacian or the Paneitz operator [30]) and a
conformal factor w, one has

log detAĝ
detAg

= γ1(A)F1[w] + γ2(A)F2[w] + γ3(A)F3[w],

where γ1(A), γ2(A) and γ3(A) are real numbers (see [5]). In particular,
ĝ = e2wg is a critical point of F2 if and only if the Q-curvature corresponding
to ĝ is constant (see [20] and the references therein).

Q-curvature appears also as the 0-th order term of the GJMS-operator
in the ambient metric construction [17] and can be related to the Poincaré
metric in one higher dimension via an “holographic formula” [19]. GJMS-
operators, in turn, play an important role in Physics, as their definition
extends to Lorentzian manifolds: they are generalizations of the Yamabe
operator and the conformally covariant powers of the wave operator on
Minkowski space [24]. Moreover, the integral of the Q-curvature satisfies
the so-called Chern-Gauss-Bonnet formula [24], which links the integral of
some function of the Q-curvature to the Euler characteristic of the manifold
(as the Gauss-Bonnet formula did with the Gaussian curvature). In R4, that
equation can tell us whether a metric is normal and, in that case, is strictly
related to the behavior of the isoperimetric ratios [10].

In what follows, we will present only the 2 and 4-dimensional cases. A
generic definition of Q-curvature can be found in [4] and explicit formulas

3Given an operator A with spectrum {λj}j , one can formally define its determinant as∏
j
λj . This is divergent, in general, so one should perform some sort of “regularization”

of the definition. Define then the Zeta function as

ζ(s) :=
∑
j

λ−sj =
∑
j

e−s logλj .

One can show by means of Weyl’s asymptotic law (see for example [32, Chapter 11]) that
this defines an analytic function for <(s) > n/2 if A is the Laplace-Beltrami opeator.
Moreover, one can meromorphically extend ζ so that it becomes regular at s = 0 (see
[31]). Taking the derivative, one has ζ′(0) := −

∑
j

log λj = − log detA, so that detA :=
exp(−ζ′(0)). For more details we refer to [28], [9], [20] and the references therein.

19
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in [24]. In dimension 2 the Q-curvature is essentially the usual Gaussian
curvature (see [9] for a more complete introduction in both 2, 4 and higher
dimensions). We just want to point out that in this case, if we conformally
rescale the metric, ĝij = e2ϕgij for some smooth function ϕ on M , then

Rĝ = e−2ϕ(Rg − 2∆f),
where Rĝ and Rg denotes, respectively, the scalar curvatures of ĝ and g.
Specifically, if g is an Euclidean metric, then we recover the 2D Liouville
equation

∆ϕ(u, v) + 2Keϕ(u,v) = 0.
In dimension 4 things start to become more interesting.

Definition. Let (M, g) be a 4-dimensional Riemannian manifold. Let
Ricg be its Ricci curvature, Rg its scalar curvature and ∆g its Laplace-
Beltrami operator. The Q-curvature of M is defined as

Qg := − 1
12
(
∆gRg −R2

g + 3|Ricg|2
)
.

Conformally rescaling the metric, ĝij = e2ϕgij for some smooth function
ϕ on M , then the Q-curvature transforms as follows
(7) Pgϕ+ 2Qg = 2Qĝe4ϕ

(see for example [8, Chapter 4]), where Pg is the Paneitz operator

Pgϕ := ∆2
gϕ+ divg

(2
3Rgg − 2Ricg

)
dϕ

introduced in 1983 by Stephen M. Paneitz [30].
Observe that, if we take M = R4 and g equal to the standard Euclidean

metric and consider ĝ conformal to g and such that Qĝ ≡ Q̄ ∈ R, then
equation (7) becomes

∆2
gϕ = 2Q̄e4ϕ.

Setting u := 4ϕ and Q̄ = 1
8 and taking into account that the Laplace-

Beltrami operator in R4 endowed with the Euclidean metric is the standard
Laplacian, we finally end up with the 4-dimensional Liouville equation

∆2u(x) = eu(x), x ∈ R4.
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