
MAT 621 Low-dimensional topology

Questions to think about

Some of the questions below are very easy; one or two are probably too hard (though you
are encouraged to consult books). I hope they will generate a useful discussion for the
class while I’m away (3/16 and 3/18).

Problem 1. Identify the manifolds obtained by surgeries on the unknot with coefficients
0, +1, −1, 1/q, where q is a non-zero integer. In each case, the surgery coefficient is taken
with respect to the canonical longitude. Give direct proofs and explicit answers, like S3

or S1 × S2. (L(1, 1) is not good enough.)

Problem 2. Show that the following lens spaces are homeomorphic (as oriented mani-
folds):

(i) L(p, q) and L(p, q + np)

(ii) L(p, q) and L(p, q′), where qq′ = 1 mod p

Also, show that there is an orientation-reversing homeomorphism between L(p, q) and
L(p,−q).

These are in fact the only cases when lens spaces are homeomorphic (the proof that there’s
nothing else is non-trivial; one needs Reidemeister torsions for instance).

Problem 3. Recall that the lens space L(p, q) may be defined as the result of the −p/q
surgery on the unknot (with respect to the standard longitude). Show that L(p, q) is home-
omorphic, as an oriented manifold, to the quotient space of S3 ⊂ C2 by the action of the
cyclic group Z/pZ, such that the generator of the group sends (z, w) to (e2πi/pz, e2πiq/pw).

(This is not very easy, unless you are very good at visualizing things. Split S3 into solid
tori along S1×S1 ⊂ C2, where the two S1 factors are the circles |z|2 = 1/2 and |w|2 = 1/2.
Examine the action of Z/pZ on each torus and figure out how the corresponding quotients
glue up. A detailed proof can be found in Rolfsen.)

If all else fails, at least do the case of L(2, 1); then you will show that L(2, 1) is homeo-
morphic to RP 3.

Problem 4. Compute the fundamental group of L(p, q) from the surgery description and
the van Kampen theorem. (The quotient description above is another way to compute
π1L(p, q).)

Problem 5. Try to prove that the mapping class group of the torus T 2 is isomorphic
to SL(2, Z), the group of 2 × 2 matrices with integer entries and det = 1. Indeed, given
f : T 2 → T 2 an orientation-preserving homeo, check that f∗ : π1(T

2) → π1(T
2) is an

element of SL(2, Z), and that this gives a group homomorphism. Also, check that this
homomorphism is surjective. Checking injectivity is annoying - for a proof, see Rolfsen’s
book. (One needs to check that a homeo that acts trivially on π1(T

2) is isotopic to the
identity.)



By the way, if we use Lickorish’s theorem that says that the mapping class group is
generated by two ”standard” Dehn twists, the statement above is an immediate corollary.
Why? What do those Dehn twists correspond to in SL(2, Z)? If A, B stand for the right
handed Dehn twists around meridian resp. longitude of the torus, check that (AB)6 = id.

Problem 6. Consider the genus g Heegaard decomposition of the sphere, S3 = H1 ∪
H2, such that H1 is a ”standard” handlebody we usually draw in R3 ⊂ S3 and H2 is
its complement. Describe its gluing map explicitly as a product of Dehn twists from
Lickorish’s theorem.

Problem 7. (a) Prove that the lens space L(p, q) is the boundary of the 4-manifold
obtained from D4 by attaching 2-handles along the components of the link shown in the
picture, with the (integer) framings ai given by the coefficients of the continued fraction
expansion of −p/q,
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Hint: first do the case where the surgery link has two components. Show that regluing
the two tori can be interpreted as regluing of a single torus; compose the gluing maps
carefully (multiply matrices!) to identify the coefficient of this single surgery. Then
proceed by induction. (Details of this can be found, for example, in Saveliev’s book.) A
slightly different perspective is given by the “slam-dunk” move (Problem 9), from which
the required statement follows immediately.

(b) (this part is easier) Use Kirby calculus, rather than the formula from (a), to identify
the lens space from the diagram in Figure 1(b) . In general, what happens if one of the
coefficients ai is +1 or −1? How does this fit with partial fractions?

(a)
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Figure 1. (a)To get the lens space described above, perform surgery on
these linked unknots, with coefficients a1, a2, . . . an. (b) What lens space is
this? Use Kirby moves.

Problem 8. We discussed Kirby moves in class, and in particular, considered a version
of the move shown in Figure 2(i): two strands going through and unknotted circle acquire
(or lose) a twist when the circle is moved off the strands.(The −1 framed circle can then
be discarded.) We said that the framings would change by −1 if the two strands are from
different components of the surgery link. How does the framing change if the two strands
are in the same component? Identify the manifold given by surgery diagram in Figure
2(ii).
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Figure 2. (i)Add each of the strands to the circle. As a result, the circle
untangles from the strands and can be discarded. If the two strands belong
to different components of the link, their framings on the right are 1 less
than their framings on the left. (ii) What is this manifold?

Problem 9. Show that the “slam-dunk” move shown in Figure 3 does not change the
3-manifold. (Unlike Kirby moves, it has no 4-dimensional interpretation, but can also be
applied to surgeries with rational coefficients.) In the picture, K1 is the meridian of the
another component K2; the framing of K2 is n ∈ Z, the framing of K1 is r ∈ Q. The
statement is that K1 can be removed, and surgery coefficient on K2 then changes from n to
n− 1

r . To see this, consider the manifold obtained by n-surgery on K2, and let S1 ×D2 be
the solid torus glued in during this surgery. Show that in this surgered manifold, K1 will
be isotopic to the core of this solid torus, ie to the curve S1 × {pt}. Thus the subsequent
surgery on K1 amounts to regluing this solid torus again, so we can think of the surgery
on K1 ∪ K2 as just one surgery on K2. It remains to compute the coefficient. For this,
consider the case n = 0; then in the torus, meridian goes to longitude, longitude goes to
meridian with orientation reversed. In other words, this is a 90 degrees rotation, so the
curve with slope r would become the curve with slope −1/r. (By the way, in the n = 0
case it’s easier to see why K1 is isotopic to the core of the solid torus.) For the arbitrary
n case, just add n twists to the longitude of K2.
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Figure 3. The slam-dunk move.


