MAT 542 Complex Analysis I

Problem Set 1

due Tuesday, February 6

Problem 1. (i) Let f(z) = 1/z (this map is called **inversion** through unit circle). Describe what f does to the inside and outside of the unit circle, and also what it does to points on the unit circle.

(ii) Let $f(z) = 1/\overline{z}$ (this map is called **reflection** through the unit circle). Describe f in the same manner as in (i).

Problem 2. (Gauss-Lucas) Recall that the **convex hull** of a set $\{z_1, \ldots, z_k\}$ in \mathbb{C} consists of all $z \in \mathbb{C}$ which can be written as $z = \sum_{j=1}^k \lambda_j z_j$ for some $0 \leq \lambda_j \leq 1$ such that $\sum_{j=1}^k \lambda_j = 1$. If P is a complex polynomial, show that the roots of the derivative P'belong to the convex hull of the roots of P. (**Hint:** Write $P(z) = \prod_{j=1}^k (z - z_j)^{m_j}$, so that

$$\frac{P'(z)}{P(z)} = \sum_{j=1}^{k} \frac{m_j}{z - z_j} = \sum_{j=1}^{k} \frac{m_j(\overline{z} - \overline{z_j})}{|z - z_j|^2}.$$

If P'(z) = 0 but $P(z) \neq 0$, then

$$z \sum_{j=1}^{k} \frac{m_j}{|z - z_j|^2} = \sum_{j=1}^{k} \frac{m_j z_j}{|z - z_j|^2}.$$

Problem 3. Assume that the function $f : \mathbb{C} \to \mathbb{C}$ is holomorphic. Let the functions $u, v : \mathbb{R}^2 \to \mathbb{R}$ be the real and imaginary parts of f, so that f = u + iv. Show that if $u = v^2$ everywhere, then f is constant.

Problem 4. Given $f: D \to \mathbb{C}$, consider f as a function $D \to \mathbb{R}^2$, and let

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right), \qquad \frac{\partial f}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right)$$

Show that $\frac{\partial z}{\partial \bar{z}} = 0$, $\frac{\partial \bar{z}}{\partial \bar{z}} = 1$, $\frac{\partial z}{\partial z} = 1$, $\frac{\partial \bar{z}}{\partial z} = 0$.

Show that f is holomorphic in D if and only if $\frac{\partial f}{\partial \overline{z}} = 0$.

Consider $g(z) = z\overline{z} = |z|^2$. Show that g is differentiable (in the complex sense) only at z = 0. (It follows that g is not holomorphic at 0, because there's no open neighborhood of 0 where f is differentiable).

Problem 5. Give an example of a power series whose radius of convergence is 1, and such that the corresponding function is continuous on the closed unit disk. (**Hint:** Try $\sum z^n/n^2$.)

Problem 6. Suppose that the power series $\sum a_n z^n$ and $\sum b_n z^n$ both have radius of convergence R > 0. Then we have analytic functions

$$f(z) = \sum_{n \in \mathbb{N}} a_n z^n$$
 and $g(z) = \sum_{n \in \mathbb{N}} b_n z^n$

in $D_R(0)$. Define the sequence (c_n) by

$$c_n = a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0, \quad n = 0, 1, 2 \dots$$

Show that the series $\sum c_n z^n$ converges in $D_R(0)$ and therefore defines an analytic function h(z). Prove that h(z) = f(z)g(z) in $D_R(0)$.

Can $\sum c_n z^n$ have a larger radius of convergence?

Problem 7. (i) For any sequence $\{a_i\}$ of non-zero complex numbers, show that

$$\liminf_{j \to \infty} \left| \frac{a_{j+1}}{a_j} \right| \le \liminf_{j \to \infty} \sqrt[j]{|a_j|} \le \limsup_{j \to \infty} \sqrt[j]{|a_j|} \le \limsup_{j \to \infty} \left| \frac{a_{j+1}}{a_j} \right|.$$

(ii) Conclude that if $\{a_j\}$ is a sequence of non-zero complex numbers for which $L := \lim_{j\to\infty} |a_{j+1}/a_j|$ exists, then the radius of convengence of the power series $\sum a_j z^j$ is 1/L. (iii) Give an example of a sequence $\{a_j\}$ of positive numbers such that

$$\liminf_{j \to \infty} \frac{a_{j+1}}{a_j} = 0, \ \liminf_{j \to \infty} \sqrt[i]{a_j} = 1, \ \limsup_{j \to \infty} \sqrt[i]{a_j} = 2, \ \limsup_{j \to \infty} \frac{a_{j+1}}{a_j} = +\infty.$$

This shows that the **ratio test** in (ii) does not always give the right radius of convergence.

Problem 8. Let $f(z) = \sum a_n z^n$ be an analytic function in $D_R(0)$. We say that f(z) is even if f(z) = f(-z), and f(z) is odd if f(z) = -f(-z) for all z. Show that f is even if and only if $a_n = 0$ for n odd, and that f is odd if and only if $a_n = 0$ for n even.