1. Let \(p : \tilde{X} \to X \) be a covering, \(X \) a path-connected space. Consider \(f \), a loop in \(X \) based at \(x_0 \); we can lift \(f \) to paths in \(\tilde{X} \) starting at different points of the fiber \(p^{-1}(x_0) \). It turns out that we may get one lift which is a closed loop, and another which is not.

(a) Let \(X \) be a figure 8 space. Give an example of a 3-fold covering \(p : \tilde{X} \to X \), a loop \(f \) based at \(x_0 \in X \), and two points \(\tilde{x}_1, \tilde{x}_2 \in p^{-1}(x_0) \), such that a lift of \(f \) starting at \(\tilde{x}_1 \) is a closed loop, and a lift starting at \(\tilde{x}_2 \) is not.

(b) Show that the following two conditions are equivalent:

(i) For every loop \(f \) based at \(x_0 \in X \), either all lifts of \(f \) to \(\tilde{X} \) are closed loops, or none of the lifts are closed (regardless of the starting points of the lifts in the fiber over \(x_0 \)).

(ii) \(p_*(\pi_1(\tilde{X}, \tilde{x}_0)) \) is a normal subgroup of \(\pi_1(X, x_0) \) for some \(\tilde{x}_0 \in p^{-1}(x_0) \).

Hint: what is the relation between the subgroups \(p_*(\pi_1(\tilde{X}, \tilde{x}_1)) \) and \(p_*(\pi_1(\tilde{X}, \tilde{x}_2)) \) for different \(\tilde{x}_1, \tilde{x}_2 \in p^{-1}(x_0) \)?

(c) If conditions of (b) are satisfied, \(p : \tilde{X} \to X \) is called a normal covering. Check that this notion is independent of the choice of \(x_0 \in X \).

(d) Show that every two-fold covering is normal.

2. Prove that any continuous map \(f : S^2 \to T^2 \) is null-homotopic. **Hint:** use the covering \(R^2 \to T^2 \).

3. Let \(A_1A_2A_3A_4A_5A_6A_7A_8 \) to be an octagon the the plane (with the standard topology), and consider the space obtained by gluing together all of the sides of the octagon in a way that preserves the cyclic order of vertices (so that \(A_1A_2 \) is identified with \(A_iA_{i+1} \) via a linear homeomorphism sending \(A_1 \) to \(A_i \) and \(A_2 \) to \(A_{i+1} \); \(A_8A_1 \) is glued to \(A_1A_2 \) so that \(A_8 \in A_8A_1 \) is identified with \(A_1 \in A_1A_2 \), \(A_1 \in A_8A_1 \) is identified with \(A_2 \in A_1A_2 \)). The resulting space \(X \) has the quotient topology.

(a) Compute \(\pi_1(X) \).

(b) Describe all the covering spaces of \(X \). Explain how the classification and hierarchy theorems work in this case.

(c) Is \(X \) a surface? **Prove** your answer.

Please also do questions 14, 15 on p. 80 in Hatcher.

Please also do questions 43.Px, 43.Qx, 43.Rx, 43.Ux about path-connectness and connectedness of cellular spaces in Viro’s book. (These questions are all related; please hand in everything.)

Read the discussion of the covering spaces for the figure 8 space in Hatcher. Note the following corollary: the free group on 2 generators has a subgroup isomorphic to the free group on \(k \) generators, for any \(k \geq 1 \).