MAT 530 Topology, Geometry I

Problem Set 8

due Friday, November 6

1. Suppose X is a second-countable space, and X/\sim is the quotient space with the respect to some equivalence relation \sim . Is X/\sim necessarily second-countable? Prove or give a counterexample.

(Unlike the exam question, there are no additional hypotheses on X and \sim .)

2. The Hatcher's book has an appendix on cell complexes. Please read the definitions (we discussed them in class) and Proposition A.1. Prove (from definition on p.519) that every CW-complex is Hausdorff. You can find a proof in Hatcher, but you should understand it thoroughly and write in your own words.

Please read the definition of a topological group on p. 145 in Munkres, and do question 2 on pp.145–146.

3. Let G be a topological group, $x_0 \in G$. Show that the fundamental group $\pi_1(G, x_0)$ is abelian.

4. Let X, Y be topological spaces, $x_0 \in X$, $y_0 \in Y$. Show that $\pi_1(X \times Y, (x_0, y_0)) = \pi_1(X, x_0) \times \pi_1(Y, y_0).$

Please also do Questions 2 and 3 of §51.