Problem 1. Show that every open set in the standard topology on \mathbb{R} is a countable disjoint union of open intervals.

Problem 2. Metrics d_1 and d_2 on a set X are called equivalent if there are constants $C, c > 0$ such that $cd_1(x, y) \leq d_2(x, y) \leq Cd_1(x, y)$ for all $x, y \in X$. Show that equivalent metrics induce the same topology on X.

Problem 3. Let C be the space of real-valued continuous functions on $[0, 1]$. For $f, g \in C$ define

$$d_1(f, g) = \int_0^1 |f(x) - g(x)|\,dx, \quad d_{sup}(f, g) = \sup_{0 \leq x \leq 1} |f(x) - g(x)|.$$

Show that d_1 and d_{sup} are metrics on C. Prove that the topologies induced on C by these metrics are different. Is it true that one of them is finer than the other?

Problem 4. Let (X, d) be a metric space. Consider $Y = X \cup \{a\}$, where $a \not\in X$ (i.e. Y is X with an extra point added). Define collections T_1, T_2 of subsets of Y as follows:

- $U \in T_1$ iff either $U \subset X$ and U is open in (X, d), or $U = Y$.
- $U \in T_2$ iff either $U = \emptyset$, or $U = V \cup \{a\}$, where $V \subset X$ is open in (X, d).

Check whether each of T_1, T_2 is a topology on Y, and if so, whether it can be induced by any metric on Y.

Problem 5. Let B be a basis for the standard topology on \mathbb{R}. Prove that B can always be decreased, i.e there is a set $U \in B$ such that $B - \{U\}$ is still a basis for the standard topology.

Please also do questions 1, 5 (basis part only) and 8b of Munkres §13.