MAT 511 Homework 3 due Thursday, Sept 25

Please explain everything and give careful proofs.

In class, we considered sequences (x_n) with positive terms, $x_n > 0$, and worked with definitions of increasing, decreasing, and bounded sequences. Let us state some more definitions:

(S-INC) A sequence (x_n) is strictly increasing if $\forall n \ x_n < x_{n+1}$.

(This is slightly different from increasing sequences we considered in class, as we no longer allow $x_n = x_{n+1}$.)

(BDD) A sequence (x_n) is bounded if $\exists M \forall n \ x_n < M$.

(This is the definition we had in class.)

(∞) A sequence (x_n) goes to ∞ if $\forall M \exists N \forall n > N x_n > M$.

1. Give a definition of a sequence that does not go to infinity by constructing a (useful) denial of the definition (∞) above. Give examples (with proofs) of a sequence that goes to ∞ and a sequence that does not go to ∞ .

2. Are the following statements true or false? Prove or give counterexample.

(a) A strictly increasing sequence can be bounded.

(b) A bounded sequence cannot go to infinity.

(c) Every sequence that goes to ∞ is strictly increasing.

In class, we stated the following Pigeonhole principle:

If there are more than nk rabbits in k cages, then there is a cage that contains more than n rabbits.

(We gave a simple proof by contradiction: if every cage contains no more than n rabbits, then there would be no more than nk rabbits total.)

Use a similar argument to solve the following geometric problem.

3. There are 5 points in a 1in×1in square. Prove that there exist two points such that the distance between them is no more than $\sqrt{2}/2$ in. Is it true that there two points with distance less than $\sqrt{2}/2$ in?

(Try to cut the square into appropriate "cages". You can use the fact that the largest distance between two points in a square is given by its diagonal. See also question 11 of $\S1.5$ – you don't have to use the Pigeonhole principle for that one, but if you do, you'll use a very similar idea.)

Please also do question 11 of $\S1.5$, and question 8(efgh) of $\S1.6$.