
MAT 364 - Homework 9 Solutions

Exercise 3.15– Show that if X is a topological space consisting of a finite number of points,
with any topology, then X is compact.

Proof: As X is finite, we can write X = {x1, x2, . . . , xn}. Let U = {Uα}α∈I be any open cover
of X. Note that we do not assume anything about this cover - the index set I is an arbitrary set,
and we make no assumption that the Uα are all unique sets. We only know that each Uα is an open
set and that the union ∪α∈IUα = X.

Then for each xi ∈ X, there exists an open set Uαi
from the cover such that xi ∈ Uαi

. Consider
the finite subcollection of U given by {Uαi

}ni=1. Clearly the union ∪ni=1Uαi
⊂ X. Given xi ∈ X, we

have xi ∈ Uαi
⊂ ∪ni=1Uαi

, hence X ⊂ ∪ni=1Uαi
, and therefore X = ∪ni=1Uαi

.
Thus the collection {Uαi

}ni=1 is a finite subcover of U . Then every open cover of X has a finite
subcover, hence X is compact.

Exercise 3.16 – Show that any space X with the indiscrete topology is compact.

Proof: Let X be a space with the indiscrete topology, that is, the only open sets in X are X
and ∅. Let U = {Uα}α∈I be an open cover of X. At least one of these Uα is nonempty, for if they
were all empty then ∪Uα = ∅, and we would have that U is not a cover of X. So there exists some
fixed β ∈ I such that Uβ is nonempty. Since Uβ is a nonempty open set and X has the indiscrete
topology, we have that Uβ = X.

Then the collection {Uβ}, consisting of a single element, is a finite subcover of U . Clearly it is
finite, consists of open sets, and the union of all elements in this subcover is X, which covers X.
Thus any open cover has a finite subcover, hence X is compact.

Exercise 3.22 – Show that N is connected in the finite complement topology.

Proof: Recall that the finite complement topology on N is that a non-empty subset U ⊂ N is
open if and only if the complement N− U is a finite set.

Assume by contradiction that N is not connected - that is, that there exists A,B nonempty,
open sets such that A ∪ B = N and A ∩ B = ∅. Note that this implies that N − A = B and
N− B = A. Because A is open and we are using the finite complement topology, the complement
N−A = B is finite. Similarly, because B is open we have that N−B = A is finite. Thus A,B are
both finite sets, so their union A∪B = N is a finite set. But N is infinite, and we have a contradiction.

Exercise 3.25 – Prove that ifX is a Hausdorff space, Y is a compact subset ofX, and x ∈ X−Y ,
then there are disjoint open sets U and V in X such that x ∈ U and Y ⊂ V .

Proof: Consider any y ∈ Y . Then because X is Hausdorff, there exist disjoint open sets Uy, Vy
such that x ∈ Uy and y ∈ Vy. Letting y vary, this gives two collections of open sets, {Uy}y∈Y and
{Vy}y∈Y .

Observe that this second collection is an open cover of Y - it is clearly a collection of open
sets, and it contains every y ∈ Y by construction. Since Y is compact, this open cover has a finite
subcover. That is, there exist {y1, . . . , ym} a finite collection of points in Y such that ∪mi=1Vyi ⊃ Y .

Let V = ∪mi=1Vyi . This is a union of open sets in X, hence is open, and from above we have that
Y ⊂ V . Let U = ∩mi=1Uyi , so that U is the intersection of the Uyi that are associated to the Vyi in
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the finite subcover. Then U is a finite intersection of open sets, hence open, and also x ∈ U since
x ∈ Uy for all y ∈ Y .

It only remains to check that U ∩ V = ∅. Assume by contradiction that there exists some point
z ∈ U ∩Y . Since Y = ∪mi=1Uyi , z ∈ Y implies that z ∈ Uyi for some fixed i. Similarly, z ∈ U implies
that z ∈ Uyi . Then z ∈ Uyi ∩Vyi , but these open sets are disjoint. With this contradiction, we must
have that U ∩ V = ∅.

Exercise 3.26 – Prove that if X is a Hausdorff space and Y is a compact subset of X, then Y
is closed.

Proof: Let x ∈ X−Y . From the previous problem, there exists disjoint open sets U and V such
that x ∈ U and Y ⊂ V . Thus U ∩ Y = ∅, so that U ⊂ X − Y .

Thus for every x ∈ X − Y , there exists an open set Ux containing x with Ux ⊂ X − Y . Let
O = ∪x∈X−YUx. This is a union of open sets, hence is open. Because each Ux ⊂ X − Y , we have
that O ⊂ X − Y . On the other hand, for every x ∈ X − Y we have x ∈ Ux ⊂ O, so X − Y ⊂ O.
Thus O = X − Y . Then the complement of Y is an open set, so by definition Y is closed.

Question 1 – Suppose f : X → Y is a continuous function which is onto.
Part A: If X is Hausdorff, must Y always be Hausdorff?

Solution to Part A: Y need not be Hausdorff. As a counterexample, consider any set X with
more than 1 point. Let X1 be that set equipped with the discrete topology, which is Hausdorff as
shown in class. Let X2 be that set equipped with the indiscrete topology, which is not Hausdorff
as shown in class. Let f : X1 → X2 be the identity function. Then this is a surjection (the identity
function is always a bijection) and is also continuous, as any function with discrete domain is con-
tinuous (or any function with indiscrete range is continuous).

Part B: If Y is Hausdorff, must X always be Hausdorff?

Solution to Part B: X need not be Hausdorff. As a counterexample, let X = {a, b, c} be given
the topology TX = {∅, {a}, {b, c}, X}. Note that this is a valid topology, and this topology is not
Hausdorff, as any open set that contains b also contains c. Let Y = {d, e}, with the discrete topol-
ogy, which is Hausdorff. Let f : X → Y be defined by f(a) = d and f(b) = f(c) = e. This function
is surjective, and it is not hard to check the preimages of all open sets to see that this function is
also continuous.

Question 2 – Let A = {1, 1/2, 1/3, . . . , 1/n, . . .} and let B = A ∪ {0}. Is A compact? Is B
compact? Argue directly from the definitions.

Proof: A is not compact. To prove this, we need to find an open cover that does not have any

finite subcover. For any n ≥ 1, observe that
(

1
n+1/2

, 1
n−1/2

)
∩A = 1

n
, so that in fact every singleton

set {1/n} is open in the subspace topology on A. The collection of all of these singleton sets is
therefore an open cover of A, and cannot have a finite subcover. The union of a finite number of
points from this cover is only a finite set, and a finite set cannot contain an infinite set. Another
open cover without a finite subcover is given by the collection {(1/n, 2)}∞n=2 - observe that because
these open sets are nested, any finite collection of them is contained in (1/m, 2) for some large fixed
m, which will not cover all of A.
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On the other hand, B is compact. Let U = {Uα}α∈I be any open cover of B. Because this
collection is a cover, there exists some Uα from this cover such that 0 ∈ Uα. Note that Uα is an
open set in R, so by definition of the topology on R is contains some open interval (−ε, ε) around 0.

Observe that there exists some N > 1 such that 1/N ≥ ε but 1
N+1

< ε. Thus, the set (−ε, ε) will
contain all but finitely many points of B - it will only not contain the points 1, 1/2, 1/3, . . . , 1/N .
Since Uα contains all of (−ε, ε), we have that Uα will contain all contain all but finitely many points
of B as well - the only points it might not contain are 1, 1/2, 1/3, . . . , 1/N .

But for each of these points, there exists Uβi for i = 1, . . . , N such that 1/i ∈ Uβi , since U must
cover all the points of B. Thus, the collection {Uα, Uβ1 , . . . , UβN} covers all the points of B. It is
clearly finite, hence is a finite subcover of U . Since every open cover of B has a finite subcover, B
is compact.
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