
MAT 364 - Homework 5 Solutions

Exercise 3.7: Let X be a topological space an A a subset of X. Prove that B ⊂ A is closed in
A if and only if B = A ∩ C for some C ⊂ X closed in X.

Solution: (⇒) Let B ⊂ A be closed in A. Then by definition the complement A−B is an open
set in A. From the statement about open sets in Theorem 3.12, we have that A − B = A ∩ U for
some open set U ⊂ X. Then

B = A− (A−B) = A− (A ∩ U) = (X ∩ A)− (A ∩ U) = (X − U) ∩ A

Since U is open in X, X − U is closed in X, so if we consider the closed set C = X − U , we have
B = C ∩ A as desired.

(⇐) Let B = A ∩ C for some C ⊂ X closed in X. Then

A−B = A− (A ∩ C) = (X − C) ∩ A

and X −C is open in X since C is closed. Thus the “openness” section of Theorem 3.12 gives that
A−B is an open set in A, so that B is closed in A.

Exercise 3.28: Let X, Y be topological spaces, and let X × Y be given the product topology.
Prove that the projections pX : X × Y → X and pY : X × Y → Y defined by pX(x, y) = x and
pY (x, y) = y are continuous.

Solution: We’ll just show that pX is continuous - basically the same argument shows that pY is
continuous.

Let U ⊂ X be an open set. Then the preimage under the projection is

(p−1X )(U) = {(x, y) ∈ X × Y : pX(x, y) ∈ U} = {(x, y) ∈ X × Y : x ∈ U} = U × Y

The product topology on X × Y is generated by the basis of sets of the form O × O′, where O,O′

are open sets in X and Y , respectively. We observe that U × Y is of this form - U ⊂ X is open by
assumption, and Y ⊂ Y is open by the definition of a topology. Therefore we have that U × Y is
a basis element of the product topology on X × Y , and is in particular an open set in the product
topology.

Thus for any U ⊂ X open, the preimage (p−1X )(U) is open in X × Y , and therefore pX is contin-
uous.

Question 1: Let B,B′ be two bases for X, equivalent in that they satisfy the conditions

(1) For every B ⊂ B and every x ∈ B, there exists a B′ ∈ B′ such that x ∈ B′ ⊂ B.

(2) For every B′ ⊂ B′ and every x ∈ B′, there exists a B ∈ B such that x ∈ B ⊂ B.

Show that B and B′ generate the same topology on X.

Solution: Let T , T ′ be the topologies generated by B,B′, respectively. We wish to show that
T = T ′. We begin by showing that T ⊂ T ′.

Let U ∈ T be given. Then we wish to show that U ∈ T ′. To show this, it suffices to show that
B ⊂ T ′, that is, that every basis element of B is in fact an open set in the T ′ topology. This is
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because if U ∈ T , then U = ∪αBα for some collection {Bα} of elements of B. If each of these Bα

is in fact open in T ′, then U is an arbitrary union of open sets of T ′, hence is an open set in T ′.
Thus we need to show that B ⊂ T ′. Let B ∈ B be given. Let x ∈ B be given as well. Then

from property (1), there exists B′x ∈ B such that x ∈ B′x ⊂ B. Repeating this for every x ∈ B,
we observe that B = ∪x∈BB′x. Each B′x is an open set in the T ′ topology, so the union ∪x∈BB′x is
an open set in T ′, that is, B is open in the T ′ topology. We therefore have that B ⊂ T ′, which as
discussed in the previous paragraph shows that T ⊂ T ′.

The same argument, suitably changed, shows that T ′ ⊂ T . You show as above that the result
follows if B′ ⊂ T , and use property (2) above to show that B′ ⊂ T . Then the two inclusions T ⊂ T ′
and T ′ ⊂ T give the equality T = T ′.

Question 2: Let B = {(a, b) : a, b ∈ Q} be the collection of open intervals in R with rational
endpoints. Show that

(1) B is a basis for some topology on R.

(2) The topology generated by B is the usual Euclidean topology on R.

Solution: For the first part, we need to check the two conditions in the definition of a basis,
items (1) and (2) from Definition 3.3 in the text.

The first condition is that B should cover R, that is, that ∪B∈BB = R. Consider the intervals
(j, j + 2) for j ∈ Z, each of which is an element of B since Z ⊂ Q. The the union ∪j∈Z(j, j + 2) = R,
and since ∪j∈Z(j, j+2) ⊂ ∪B∈BB we have R ⊂ ∪B∈BB. The other inclusion is obvious, so ∪B∈BB =
R.

The second condition is that, for every B1, B2 ∈ B and every x ∈ B1 ∩ B2, there must exist
B3 ∈ B such that x ∈ B3 ⊂ B1 ∩ B2. We first consider what this intersection looks like. Say
B1 = (a, b) and B2 = (c, d) for a, b, c, d ∈ Q. Then if B1 ∩ B2 6= ∅, we have three possibilities -
either B1 ⊂ B2, B2 ⊂ B1, or the intervals B1 and B2 overlap but neither is contained in the other.
In the first two cases, the intersection B1 ∩ B2 is B1 or B2, respectively, and in the third case, the
intersection is the interval (c, b), which is an interval with rational endpoints. Thus in all cases we
have that B1 ∩ B2 is itself an element of the basis B, so setting B3 = B1 ∩ B2 gives the desired
neighborhood.

We now check that the topology generated by B is the same as the Euclidean topology on R.
Recall that the standard Euclidean topology on R is generated by the basis B′ = {D(x, r) : x ∈
R, r > 0} of “open balls”, which in R are just open intervals of the form (x− r, x + r). Instead of
writing our intervals in this form, we can just write them as (a, b) for any a, b ∈ R, and observe that
any open interval of the form (a, b) can be written in the form (x−r, x+r) for appropriate choice of
x, r. Thus the standard Euclidean topology on R is generated by the basis B′ = {(a, b), a < b ∈ R}.

To show that the topology generated by B is the standard Euclidean topology, we’ll show that
the bases B and B′ are equivalent, so that from Question 1 above they generate the same topology.
We need to show both conditions (1) and (2) stated in that question.

To show condition (1), let B ∈ B be given, and let x ∈ B also be given. Note that B = (a, b) for
some a, b ∈ Q ⊂ R, so in fact we can consider B as an element of the B′ basis. (An open interval
with rational endpoints is automatically an open interval with real endpoints). Setting B′ = B, we
have that x ∈ B′ ⊂ B as desired.

Condition (2) is slightly more complicated. Let (a, b) = B′ ∈ B′ be given, so that a, b ∈ R, and
let x ∈ (a, b). We’ll use the following fact about the real numbers - between any two real numbers,
there is a rational number. Using this property twice, we can find rational numbers c, d such that
a < c < x < d < b. Now (c, d) ∈ B since it is an open interval with rational endpoints. Therefore
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we have that x ∈ (c, d) = B ⊂ (a, b) = B′, and condition (2) is fulfilled.

Question 3: Let B = {[a, b], a, b ∈ R} be the collection of all closed intervals in R. Can B be a
basis of some (not necessarily standard) topology on R? Why or why not?

Solution: We need to check to see if the collection B satisfies the two requirements in the
definition of a basis, items (1) and (2) from Definition 3.3 in the text. It is not hard to see that
condition (1) is satisfied, but condition (2) will not be true. Therefore B cannot be the basis for a
topology.

To see that condition (2) fails, consider B1 = [a, b] and B2 = [b, c]. The intersection is
B1 ∩ B2 = {b}. In order for condition (2) to be satisfied, we need to find a third basis ele-
ment B3 = [d, e] such that b ∈ [d, e] ⊂ {b} = B1 ∩ B2. This is not possible, as any closed interval
containing b will contain points other than b, hence will not be a subset of B1 ∩B2.

Question 4: Consider X = {a, b, c, d, e}, with a collection of subsets T = {{a, b}, {d, e},
{a, b, d, e}, X, ∅}. Prove that T is a topology on X. Find two subsets of X, A and B, each contain-
ing more than one point each, such that the subspace topology on A is discrete and the subspace
topology on B is indiscrete. Explain your answer.

Solution: We begin by checking that T satisfies the 3 conditions of a topology - that X, ∅ ∈ T ,
that T is closed under arbitrary union, and that T is closed under finite intersection.

That X, ∅ ∈ T is clear. To check that T is closed under union, we have that any element of T
union either itself, X, or ∅ is evidently in T . The remaining unions are

{a, b} ∪ {a, b, d, e} = {a, b, d, e} {d, e} ∪ {a, b, d, e} = {a, b, d, e} {a, b} ∪ {d, e} = {a, b, d, e}

so we have that T is closed under union. (Note that the last union here is why the original statement
of the problem, which didn’t include {a, b, d, e} in T , was incorrect.) By induction T is closed under
finite unions, and this is enough to show that T is closed under arbitrary unions since T is finite.

To check that T is closed under intersection, we compute all the intersections. We’ll prove that
the intersection of any two elements of T is again in T , and induction then allows us to say that
T is closed under finite intersection. Any subset intersected with itself, X, or ∅ is again easily seen
to be in T . Checking the remaining possible intersections, we have

{a, b} ∩ {a, b, d, e} = {a, b} {d, e} ∩ {d, e} = {a, b, d, e} {a, b} ∩ {d, e} = ∅

so we have that T is closed under intersection.
Knowing that T is a topology, we move on the the second part. Multiple answers are possible

for this part; one possible answer is to choose A = {a, d} and B = {a, b}.
We consider A first. A has the subspace topology, so the open sets in A are obtained by taking

open sets in T and intersecting with A. They are

{a, b} ∩ A = {a}
{d, e} ∩ A = {d}

{a, b, d, e} ∩ A = A

X ∩ A = A

∅ ∩ A = ∅,
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or TA = {{a}, {d}, A, ∅}. These are all of the subsets of A, therefore A has the discrete topology.
To find the topology on B, we repeat this procedure,

{a, b} ∩B = B

{d, e} ∩B = ∅
{a, b, d, e} ∩B = B

X ∩B = B

∅ ∩B = ∅,

or TB = {B, ∅}. Since the only open sets for B are itself and ∅, B has the indiscrete topology.
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