MAT 364 - Homework 5 Solutions

Exercise 3.7: Let X be a topological space an A a subset of X. Prove that $B \subset A$ is closed in A if and only if $B = A \cap C$ for some $C \subset X$ closed in X.

Solution: (\Rightarrow) Let $B \subset A$ be closed in A. Then by definition the complement A - B is an open set in A. From the statement about open sets in Theorem 3.12, we have that $A - B = A \cap U$ for some open set $U \subset X$. Then

$$B = A - (A - B) = A - (A \cap U) = (X \cap A) - (A \cap U) = (X - U) \cap A$$

Since U is open in X, X - U is closed in X, so if we consider the closed set C = X - U, we have $B = C \cap A$ as desired.

 (\Leftarrow) Let $B = A \cap C$ for some $C \subset X$ closed in X. Then

$$A - B = A - (A \cap C) = (X - C) \cap A$$

and X - C is open in X since C is closed. Thus the "openness" section of Theorem 3.12 gives that A - B is an open set in A, so that B is closed in A.

Exercise 3.28: Let X, Y be topological spaces, and let $X \times Y$ be given the product topology. Prove that the projections $p_X : X \times Y \to X$ and $p_Y : X \times Y \to Y$ defined by $p_X(x,y) = x$ and $p_Y(x,y) = y$ are continuous.

Solution: We'll just show that p_X is continuous - basically the same argument shows that p_Y is continuous.

Let $U \subset X$ be an open set. Then the preimage under the projection is

$$(p_X^{-1})(U) = \{(x, y) \in X \times Y : p_X(x, y) \in U\} = \{(x, y) \in X \times Y : x \in U\} = U \times Y$$

The product topology on $X \times Y$ is generated by the basis of sets of the form $O \times O'$, where O, O' are open sets in X and Y, respectively. We observe that $U \times Y$ is of this form $-U \subset X$ is open by assumption, and $Y \subset Y$ is open by the definition of a topology. Therefore we have that $U \times Y$ is a basis element of the product topology on $X \times Y$, and is in particular an open set in the product topology.

Thus for any $U \subset X$ open, the preimage $(p_X^{-1})(U)$ is open in $X \times Y$, and therefore p_X is continuous.

Question 1: Let $\mathcal{B}, \mathcal{B}'$ be two bases for X, equivalent in that they satisfy the conditions

(1) For every $B \subset \mathcal{B}$ and every $x \in B$, there exists a $B' \in \mathcal{B}'$ such that $x \in B' \subset B$.

(2) For every $B' \subset \mathcal{B}'$ and every $x \in B'$, there exists a $B \in \mathcal{B}$ such that $x \in B \subset B$.

Show that \mathcal{B} and \mathcal{B}' generate the same topology on X.

Solution: Let $\mathcal{T}, \mathcal{T}'$ be the topologies generated by $\mathcal{B}, \mathcal{B}'$, respectively. We wish to show that $\mathcal{T} = \mathcal{T}'$. We begin by showing that $\mathcal{T} \subset \mathcal{T}'$.

Let $U \in \mathcal{T}$ be given. Then we wish to show that $U \in \mathcal{T}'$. To show this, it suffices to show that $\mathcal{B} \subset \mathcal{T}'$, that is, that every basis element of \mathcal{B} is in fact an open set in the \mathcal{T}' topology. This is

because if $U \in \mathcal{T}$, then $U = \bigcup_{\alpha} B_{\alpha}$ for some collection $\{B_{\alpha}\}$ of elements of \mathcal{B} . If each of these B_{α} is in fact open in \mathcal{T}' , then U is an arbitrary union of open sets of \mathcal{T}' , hence is an open set in \mathcal{T}' .

Thus we need to show that $\mathcal{B} \subset \mathcal{T}'$. Let $B \in \mathcal{B}$ be given. Let $x \in B$ be given as well. Then from property (1), there exists $B'_x \in \mathcal{B}$ such that $x \in B'_x \subset B$. Repeating this for every $x \in B$, we observe that $B = \bigcup_{x \in B} B'_x$. Each B'_x is an open set in the \mathcal{T}' topology, so the union $\bigcup_{x \in B} B'_x$ is an open set in \mathcal{T}' , that is, B is open in the \mathcal{T}' topology. We therefore have that $\mathcal{B} \subset \mathcal{T}'$, which as discussed in the previous paragraph shows that $\mathcal{T} \subset \mathcal{T}'$.

The same argument, suitably changed, shows that $\mathcal{T}' \subset \mathcal{T}$. You show as above that the result follows if $\mathcal{B}' \subset \mathcal{T}$, and use property (2) above to show that $\mathcal{B}' \subset \mathcal{T}$. Then the two inclusions $\mathcal{T} \subset \mathcal{T}'$ and $\mathcal{T}' \subset \mathcal{T}$ give the equality $\mathcal{T} = \mathcal{T}'$.

Question 2: Let $\mathcal{B} = \{(a, b) : a, b \in \mathbb{Q}\}$ be the collection of open intervals in \mathbb{R} with rational endpoints. Show that

- (1) \mathcal{B} is a basis for *some* topology on \mathbb{R} .
- (2) The topology generated by \mathcal{B} is the usual Euclidean topology on \mathbb{R} .

Solution: For the first part, we need to check the two conditions in the definition of a basis, items (1) and (2) from Definition 3.3 in the text.

The first condition is that \mathcal{B} should cover \mathbb{R} , that is, that $\bigcup_{B \in \mathcal{B}} B = \mathbb{R}$. Consider the intervals (j, j+2) for $j \in \mathbb{Z}$, each of which is an element of \mathcal{B} since $\mathbb{Z} \subset \mathbb{Q}$. The the union $\bigcup_{j \in \mathbb{Z}} (j, j+2) = \mathbb{R}$, and since $\bigcup_{j \in \mathbb{Z}} (j, j+2) \subset \bigcup_{B \in \mathcal{B}} B$ we have $\mathbb{R} \subset \bigcup_{B \in \mathcal{B}} B$. The other inclusion is obvious, so $\bigcup_{B \in \mathcal{B}} B = \mathbb{R}$.

The second condition is that, for every $B_1, B_2 \in \mathcal{B}$ and every $x \in B_1 \cap B_2$, there must exist $B_3 \in \mathcal{B}$ such that $x \in B_3 \subset B_1 \cap B_2$. We first consider what this intersection looks like. Say $B_1 = (a, b)$ and $B_2 = (c, d)$ for $a, b, c, d \in \mathbb{Q}$. Then if $B_1 \cap B_2 \neq \emptyset$, we have three possibilities - either $B_1 \subset B_2, B_2 \subset B_1$, or the intervals B_1 and B_2 overlap but neither is contained in the other. In the first two cases, the intersection $B_1 \cap B_2$ is B_1 or B_2 , respectively, and in the third case, the intersection is the interval (c, b), which is an interval with rational endpoints. Thus in all cases we have that $B_1 \cap B_2$ is itself an element of the basis \mathcal{B} , so setting $B_3 = B_1 \cap B_2$ gives the desired neighborhood.

We now check that the topology generated by \mathcal{B} is the same as the Euclidean topology on \mathbb{R} . Recall that the standard Euclidean topology on \mathbb{R} is generated by the basis $\mathcal{B}' = \{D(x,r) : x \in \mathbb{R}, r > 0\}$ of "open balls", which in \mathbb{R} are just open intervals of the form (x - r, x + r). Instead of writing our intervals in this form, we can just write them as (a, b) for any $a, b \in \mathbb{R}$, and observe that any open interval of the form (a, b) can be written in the form (x - r, x + r) for appropriate choice of x, r. Thus the standard Euclidean topology on \mathbb{R} is generated by the basis $\mathcal{B}' = \{(a, b), a < b \in \mathbb{R}\}$.

To show that the topology generated by \mathcal{B} is the standard Euclidean topology, we'll show that the bases \mathcal{B} and \mathcal{B}' are equivalent, so that from Question 1 above they generate the same topology. We need to show both conditions (1) and (2) stated in that question.

To show condition (1), let $B \in \mathcal{B}$ be given, and let $x \in B$ also be given. Note that B = (a, b) for some $a, b \in \mathbb{Q} \subset \mathbb{R}$, so in fact we can consider B as an element of the \mathcal{B}' basis. (An open interval with rational endpoints is automatically an open interval with real endpoints). Setting B' = B, we have that $x \in B' \subset B$ as desired.

Condition (2) is slightly more complicated. Let $(a, b) = B' \in \mathcal{B}'$ be given, so that $a, b \in \mathbb{R}$, and let $x \in (a, b)$. We'll use the following fact about the real numbers - between any two real numbers, there is a rational number. Using this property twice, we can find rational numbers c, d such that a < c < x < d < b. Now $(c, d) \in \mathcal{B}$ since it is an open interval with rational endpoints. Therefore we have that $x \in (c, d) = B \subset (a, b) = B'$, and condition (2) is fulfilled.

Question 3: Let $\mathcal{B} = \{[a, b], a, b \in \mathbb{R}\}$ be the collection of all closed intervals in \mathbb{R} . Can \mathcal{B} be a basis of *some* (not necessarily standard) topology on \mathbb{R} ? Why or why not?

Solution: We need to check to see if the collection \mathcal{B} satisfies the two requirements in the definition of a basis, items (1) and (2) from Definition 3.3 in the text. It is not hard to see that condition (1) is satisfied, but condition (2) will not be true. Therefore \mathcal{B} cannot be the basis for a topology.

To see that condition (2) fails, consider $B_1 = [a, b]$ and $B_2 = [b, c]$. The intersection is $B_1 \cap B_2 = \{b\}$. In order for condition (2) to be satisfied, we need to find a third basis element $B_3 = [d, e]$ such that $b \in [d, e] \subset \{b\} = B_1 \cap B_2$. This is not possible, as any closed interval containing b will contain points other than b, hence will not be a subset of $B_1 \cap B_2$.

Question 4: Consider $X = \{a, b, c, d, e\}$, with a collection of subsets $\mathcal{T} = \{\{a, b\}, \{d, e\}, \{a, \overline{b}, \overline{d}, e\}, \overline{X}, \emptyset\}$. Prove that \mathcal{T} is a topology on X. Find two subsets of X, A and B, each containing more than one point each, such that the subspace topology on A is discrete and the subspace topology on B is indiscrete. Explain your answer.

Solution: We begin by checking that \mathcal{T} satisfies the 3 conditions of a topology - that $X, \emptyset \in \mathcal{T}$, that \mathcal{T} is closed under arbitrary union, and that \mathcal{T} is closed under finite intersection.

That $X, \emptyset \in \mathcal{T}$ is clear. To check that \mathcal{T} is closed under union, we have that any element of \mathcal{T} union either itself, X, or \emptyset is evidently in T. The remaining unions are

$$\{a,b\} \cup \{a,b,d,e\} = \{a,b,d,e\} \qquad \{d,e\} \cup \{a,b,d,e\} = \{a,b,d,e\} \qquad \{a,b\} \cup \{d,e\} = \{a,b,d,e\}$$

so we have that \mathcal{T} is closed under union. (Note that the last union here is why the original statement of the problem, which didn't include $\{a, b, d, e\}$ in \mathcal{T} , was incorrect.) By induction \mathcal{T} is closed under finite unions, and this is enough to show that \mathcal{T} is closed under arbitrary unions since \mathcal{T} is finite.

To check that \mathcal{T} is closed under intersection, we compute all the intersections. We'll prove that the intersection of any two elements of \mathcal{T} is again in \mathcal{T} , and induction then allows us to say that \mathcal{T} is closed under finite intersection. Any subset intersected with itself, X, or \emptyset is again easily seen to be in \mathcal{T} . Checking the remaining possible intersections, we have

$$\{a,b\} \cap \{a,b,d,e\} = \{a,b\} \qquad \{d,e\} \cap \{d,e\} = \{a,b,d,e\} \qquad \{a,b\} \cap \{d,e\} = \emptyset$$

so we have that \mathcal{T} is closed under intersection.

Knowing that \mathcal{T} is a topology, we move on the second part. Multiple answers are possible for this part; one possible answer is to choose $A = \{a, d\}$ and $B = \{a, b\}$.

We consider A first. A has the subspace topology, so the open sets in A are obtained by taking open sets in \mathcal{T} and intersecting with A. They are

$$\{a, b\} \cap A = \{a\}$$

$$\{d, e\} \cap A = \{d\}$$

$$\{a, b, d, e\} \cap A = A$$

$$X \cap A = A$$

$$\emptyset \cap A = \emptyset,$$

or $\mathcal{T}_A = \{\{a\}, \{d\}, A, \emptyset\}$. These are all of the subsets of A, therefore A has the discrete topology. To find the topology on B, we repeat this procedure,

$$\{a, b\} \cap B = B \{d, e\} \cap B = \emptyset \{a, b, d, e\} \cap B = B X \cap B = B \emptyset \cap B = \emptyset,$$

or $\mathcal{T}_B = \{B, \emptyset\}$. Since the only open sets for B are itself and \emptyset , B has the indiscrete topology.