Problem 1. Let X be a topological space. Suppose that Y is a subset of X. We can define a topology on Y as follows. If $\mathcal{T}_X = \{U_i\}$ is the topology on X, let \mathcal{T}_Y to be the collection of all sets $U_i \cap Y$. (Notice that $U_i \cap Y$ are subsets of Y.)

Check that \mathcal{T}_Y is indeed a topology on Y (ie it satisfies the axioms). It is called a \textit{subspace topology}.

Problem 2. Suppose that X is a topological space, Y is a subset of X. As explained in Problem 1, Y can be considered as a topological space (equipped with subspace topology). Prove that if X is compact, and Y is closed in X, then Y is also compact.

Problem 3. Consider the set \mathbb{R}^2. For any two points $x = (x_1, x_2)$ and $y = (y_1, y_2)$, define the distance $d(x, y)$ by the formula

$$d(x, y) = |x_1 - y_1| + |x_2 - y_2|.$$

(a) Prove that d satisfies the axioms for a distance, ie (\mathbb{R}^2, d) is a metric space.

(b) Sketch the unit disk $D(0,1)$ centered at 0 for this metric.

Please also do Exercise 3.3 p. 40, Exercise 3.9 p. 43.