
Isometries.

Congruence mappings as isometries. The notion of isometry is a general notion
commonly accepted in mathematics. It means a mapping which preserves distances.
The word metric is a synonym to the word distance. We will study isometries of the
plane. In fact, we have already encountered them, when we superimposed a plane
onto itself in various ways (eg by reflections or rotations) to prove congruence of
triangles and such. We now show that each isometry is a “congruence mapping” like
that.

Theorem 1. An isometry maps
(i) straight lines to straight lines;
(ii) segments to congruent segments;
(iii) triangles to congruent triangles;
(iv) angles to congruent angles.

Proof. Let’s show that an isometry S maps a segment AB to segment S(A)S(B) which
is congruent to AB. It is clear (from the definition of isometry) that the distance
between S(A) and S(B) is the same as the distance between A and B. However,
we need to check that the image of AB will indeed be a straight line segment. To
do so, pick an arbitrary point X on AB. Then S(A)S(B) = AB = AX + XB =
S(A)S(X)+S(X)S(B), and by the triangle inequality the point S(X) must be on the
segment S(A)S(B) (otherwise we would have S(A)S(X) + S(X)S(B) > S(A)S(B).
So image of the segment AB lies in the segment S(A)S(B), and indeed, covers the
whole of S(A)S(B) without leaving any holes: if X ′ is a point on S(A)S(B), find X
on AB such that XA = X ′S(A), XB = X ′S(B), then S(X) = X ′. ¤

Examples of isometries. We have encountered quite a few examples before: re-
flections, rotations, and translations are all isometries. (It is pretty easy to see that
the distances are preserved in each case: for instance, a reflection Rl through the line
l maps any segment AB to a symmetric, and thus congruent, segment A′B′.) Let’s
look at some examples more closely.

Translations and central symmetries. A map of the plane to itself is called a
translation if, for some fixed points A and B, it maps a point X to a point T (X) such
that ABT (X)X is a parallelogram. (Note the order of points!)

Here we have to be careful with the notion of parallelogram, because a parallelogram
may degenerate to a figure in a line. Not any degenerate quadrilateral fitting in a line
deserves to be called a parallelogram, although any two sides of such a degenerate
quadrilateral are parallel. By a parallelogram we mean a sequence of four segments
KL, LM , MN and MK such that KL is congruent and parallel to MN and LM is
congruent and parallel to MK. This definition describes the usual parallelograms, for
which congruence can be deduced from parallelness and vice versa, and the degenerate
parallelograms.
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Theorem 2. For any points A and B there exists a translation mapping A to B. A
translation is an isometry.

Proof. Any three points A, B and X can be completed in a unique way to a par-
allelogram ABX ′X. Define T (X) = X ′. For any points X, Y the quadrilateral
XY T (Y )T (X) is a parallelogram, since XT (X)||AB||Y T (Y ). Therefore, XY =
T (X)T (Y ), so T is an isometry. ¤

Denote by TAB the translation which maps A to B.

Theorem 3. The composition of any two translations is a translation.

Proof. Exercise. ¤
Theorem 3 means that TBC ◦ TAB = TAC .
Fix a point O. A map of the plane to itself which maps a point A to a point B

such that O is a midpoint of the segment AB is called the symmetry about a point O.

Theorem 4. A symmetry about a point is an isometry.

Proof. SAS-test for congruent triangles (extended appropriately to degenerate trian-
gles.) ¤
Theorem 5. The composition of any two symmetries in a point is a translation.
More precisely, SB ◦ SA = T

2
−→
AB

, where SX denotes the symmetry about point X.

Proof. Exercise. ¤
Remark. The equality

SB ◦ SA = T
2
−→
AB

implies a couple of other useful equalities. Namely, compose both sides of this equality
with SB from the left:

SB ◦ SB ◦ SA = SB ◦ T
2
−→
AB

Since SB ◦ SB is the identity, it can be rewritten as

SA = SB ◦ T
2
−→
AB

.

Similarly, but multiplying by SA from the right, we get

SB = T
2
−→
AB

◦ SA.

Corollary. The composition of an even number of symmetries in points is a trans-
lation; the composition of an odd number of symmetries in points is a symmetry in a
point.

Remark. In general, it is clear that a composition of isometries is an isometry:
if each mapping keeps distances the same, their composition also will. It is trickier,
however, to see the resulting isometry explicitly; we will prove a few theorems related
to compositions of isometries. To practice with compositions, consider, for example,
a reflection about a line l and a rotation by 90◦ counterclockwise about a point
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O ∈ l. When composed in different order (rotation followed by reflection vs reflection
followed by rotation), these yield reflections about different lines. The proof that
the composition is a reflection can be obtained by an explicit examination of which
points go where; by Theorem 6 , it suffice to examine 3 non-collinear points.

Recovering an isometry from the image of three points.

Theorem 6. An isometry of the plane can be recovered from its restriction to any
triple of non-collinear points.

Proof. Given images A′, B′ and C ′ of non-collinear points A, B, C under and isometry,
let us find the image of an arbitrary point X. Using a compass, draw circles cA and
cB centered at A′ and B′ of radii congruent to AX and BX, respectively. They
intersect in at least one point, because segments AB and A′B′ are congruent and the
circles centered at A and B with the same radii intersect at X. There may be two
intersection point. The image of X must be one of them. In order to choose the right
one, measure the distance between C and S and choose the intersection point X ′ of
the circles cA and cB such that C ′X ′ is congruent to CX. ¤

In fact, there are exactly two isometries with the same restriction to a pair of dis-
tinct points. They can be obtained from each other by composing with the reflection
about the line connecting these points.

Isometries as compositions of reflections.

Theorem 7. Any isometry of the plane is a composition of at most three reflections.

Proof. Choose three non-collinear points A, B, C. By theorem 6 , it would suffice
to find a composition of at most three reflections which maps A, B and C to their
images under a given isometry S.

First, find a reflection R1 which maps A to S(A). The axis of such a reflection is a
perpendicular bisector of the segment AS(A). It is uniquely defined, unless S(A) = A.
If S(A) = A, one can take either a reflection about any line passing through A, or
take, instead of reflection, an identity map for R1 .

Second, find a reflection R2 which maps segment S(A)R1(B) to S(A)S(B). The
axis of such a reflection is the bisector of angle ∠R1(B)S(A)S(B).

The reflection R2 maps R1(B) to S(B). Indeed, the segment
S(A)R1(B) = R1(AB) is congruent to AB (because R1 is an isometry), AB is con-
gruent to S(A)S(B) = S(AB) (because S is an isometry), therefore S(A)R1(B) is
congruent to S(A)S(B). Reflection R2 maps the ray S(A)R1(B) to the ray S(A)S(B),
preserving the point S(A) and distances. Therefore it maps R1(B) to S(B).

Triangles R2 ◦R1(4ABC) and S(4ABC) are congruent via an isometry S ◦ (R2 ◦
R1)

−1 = S ◦R1 ◦R2, and the isometry is identity on the side S(AB) = R2 ◦R1(AB).
Now either R2(R1(C)) = C and then S = R2 ◦ R1, or the triangles R2 ◦ R1(4ABC)
and S(4ABC) are symmetric about their common side S(AB). In the former case
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S = R2 ◦R1, in the latter case denote by R3 the reflection about S(AB) and observe
that S = R3 ◦R2 ◦R1. ¤
Compositions of two reflections.

Theorem 8. The composition of two reflections in non-parallel lines is a rotation
about the intersection point of the lines by the angle equal to doubled angle between
the lines. In formula:

RAC ◦RAB = RotA,2∠BAC ,

where RXY denotes the reflection in line XY , and RotX,α denotes the rotation about
point X by angle α.

Proof. Pick some points whose images under reflections are easy to track. From
symmetries/congruent triangles in the picture, it is clear that effect of two refections
is that of a rotation. Since we know that an isometry is determined by the image of 3
non-collinear points, the ir no need to consider all possible positions of the points. ¤
Theorem 9. The composition of two reflections in parallel lines is a translation
in a direction perpendicular to the lines by a distance twice larger than the distance
between the lines.

More precisely, if lines AB and CD are parallel, and the line AC is perpendicular
to the lines AB and CD, then

RCD ◦RAB = T
2
−→
AC

.

Proof. Similar to the above. ¤
Application: finding triangles with minimal perimeters. We have considered
the following problem:

Problem 1. Given a line l and points A,B on the same side of l, find a point C ∈ l
such that the broken line ACB would be the shortest.

Recall that a solution of this problem is based on reflection. Namely, let B′ =
Rl(B). Then the desired C is the intersection point of l and AB′.

Notice that this problem can be reformulated as finding C ∈ l such that the perime-
ter of the triangle ABC is minimal.

Problem 2. Given lines l, m and a point A, find points B ∈ l and C ∈ m such that
the perimeter of the triangle ABC is the smallest possible.

Idea that solves Problem 2. Reflect point A through lines l and m, that is, consider
points B′ = Rl(A) and C ′ = Rm(A). Use these points to find B and C (how?), and
prove that the resulting triangle indeed has the smallest perimeter.

Problem 3. Given lines l, m and n, no two of which are parallel to each other. Find
points A ∈ l, B ∈ m and C ∈ n such that triangle ABC has minimal perimeter.

If we knew a point A ∈ l, the problem would be solved like Problem 2: we would
connect points Rm(A) and Rn(A) and take B and C to be the intersection points of
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this line with m and n. So, we have to find a point A ∈ l such that the segment
Rm(A)Rn(A) would be minimal.

The endpoints Rm(A), Rn(A) of this segment belong to the lines Rm(l) and Rn(l)
and are obtained from the same point A ∈ l. Therefore

Rn(A) = Rn(Rm(Rm(A))) = Rn ◦Rm(B),

where B ∈ Rm(l). So, one endpoint is obtained from another by Rn ◦Rm.
By Theorem 9 , Rn ◦ Rm is a rotation about the point m ∩ n. We look for a point

B on Rm(l) such that the segment BRn ◦Rm(B) is minimal.
The closer a point to the center of rotation, the closer this point to its image under

the rotation. Therefore the desired B is the base of the perpendicular dropped from
m∩n to Rm(l). Hence, the desired A is the base of perpendicular dropped from m∩n
to l.

Since all three lines are involved in the conditions of the problem in the same way,
the desired points B and C are also the endpoints of altitudes of the triangle formed
by lines l, m, n.

Composition of rotations.

Theorem 10. The composition of rotations (about points which may be different) is
either a rotation or a translation.

Prove this theorem by representing each rotation as a composition of two reflections
about a line. Choose the lines in such a way that the second line in the representation
of the first rotation would coincide with the first line in the representation of the
second rotation. Then in the representation of the composition of two rotations as
a composition of four reflections the two middle reflections would cancel and the
whole composition would be represented as a composition of two reflections. The
angle between the axes of these reflections would be the sum of of the angles in
the decompositions of the original rotations. If this angle is zero, and the lines are
parallel, then the composition of rotations is a translation by Theorem 9 . If the angle
is not zero, the axes intersect, then the composition of the rotations is a rotations
around the intersection point by the angle which is the sum of angles of the original
rotations.

Similar tricks with reflections allows to simplify other compositions.

Glide reflections. A reflection about a line l followed by a translation along l is
called a glide reflection. In this definition, the order of reflection and translation does
not matter, because they commute: Rl ◦ TAB = TAB ◦Rl if l ‖ AB.

Theorem 11. The composition of a central symmetry and a reflection is a glide
reflection.

Use the same tricks as for Theorem 10
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Classification of plane isometries.

Theorem 12. Any isometry of the plane is either a reflection about a line, a rotation,
a translation, or a gliding reflection.

This theorem can be deduced from Theorem 7 by taking into account relations
between reflections in lines. By Theorem 7 , any isometry of the plane is a composition
of at most 3 reflections about lines. By Theorems 8 and 9 , a composition of two
reflections is either a rotation about a point or a translation.

Lemma. A composition of three reflections is either a reflection or a gliding
reflection.

Proof. We will consider two cases: 1) all three lines are parallel, 2) not all lines are
parallel (although two of the three may be parallel to one another).

The first one is easier; it is pretty straightforward to see (at least in some examples)
that the composition is a translation. However, since the order of reflections matters,
for a precise proof we wouold have to check different cases ( if the lines are all vertical,
the first reflection may be done about the leftmost, the rightmost, or the middle lien,
etc.) To avoid this, we proceed as follows. Notice that Rl3 ◦Rl2 ◦Rl1 = Rl3 ◦(Rl2 ◦Rl1),
and the composition Rl2 ◦Rl1 of two reflections in parallel lines is a translation. This
translation depends only on the direction of the lines and the distance between them,
ie Rl2 ◦ Rl1 = Rl′2 ◦ Rl′1 for any two lines l′1, l

′
2 that are parallel to l1, l2 and have

the same distance between them. Thus, we translate the first two lines to make the
second line coincide with the third, ie choose l′1, l

′
2 so that l′2 = l3. Then

Rl3 ◦Rl2 ◦Rl1 = Rl3 ◦Rl′2 ◦Rl′1 = Rl3 ◦Rl3 ◦Rl′1 = Rl′1

since two reflections about the same line l3 cancel. Therefore, the result is a reflection
(about the line l′1).

If the three lines are not all parallel, then the second line l2 is not parallel to l1 or
l3. Let’s suppose l1 and l2 are not parallel (the other case is very similar). Then the
composition Rl2 ◦Rl1 of reflections about intersecting lines is a rotation (that depends
only on the point where the lines intersect, and the angle at which they intersect).
So the lines l1, l2 can be rotated simultaneously about their intersection point by the
same angle without changing the composition.

By an appropriate rotation, make the second line l2 perpendicular to the third line
l3 (which is not rotated), ie replace l1, l2 by l′1, l

′
2 so that Rl2 ◦ Rl1 = Rl′2 ◦ Rl′1 , and

l′2 ⊥ l3.
Then by rotating these two perpendicular lines l′2, l3 about their intersection point,

make the middle line l2 parallel to the line l1. That is, we replace the lines l′2, l3 by
lines l′′2 , l

′′
3 so that

Rl3 ◦Rl2 ◦Rl1 = Rl3 ◦Rl′2 ◦Rl′1 = Rl′′3 ◦Rl′′2 ◦Rl′1 .
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Now, the configuration of lines consists of two parallel lines and a line perpendicular
to them: l′1, l

′′
2 are parallel, l′′3 is perpendicular to them both. The composition of

reflections Rl′′2 ◦ Rl′1 is a translation by a vector perpendicular to these two lines
(and thus parallel to the third); so Rl′′3 ◦ (Rl′′2 ◦ Rl′1) is a glide symmetry. But the
composition of these three reflections is the same as the composition of reflections
about the original three lines.

Properties of the four types of isometries. We have just seen that any isometry
of the plane belongs to one of the four types. How do we detect to which type it
belongs? In particular, it may seem a bit mysterious that while composition of 3
reflections is a reflection or glide reflection, a composition of two isometries can never
be a reflection, but only a rotation or translation. This can be explained as follows.
Suppose our plane lies in the 3-space (as a horizontal xy-plane), and its top is painted
black, its bottom white. Suppose that the reflections are done by rotating the plane
around the line (axis of reflection) in the 3-space. Then after a reflection, the white
side will be on top, the black side on the bottom. Notice that the colors will flip
this way if we perform any odd number of reflections, but after an even number of
reflections the colors do not flip. (Eg after two reflections, the top will be black again,
the bottom white.) By contrast, rotations and translations do not flip the colors. This
explains why the composition of two reflections can be a rotation or translation, but
never a reflection.

Another fundamental characteristic of an isometry is the points that it leaves fixed.
For instance, a rotation doesn’t move the center (but moves any other point); a
reflection fixes every point of its axis. We summarize these properties in the chart
below.

type of isometry points that stay fixed flips colors?
rotation the center no
reflection every point on axis yes
translation none no
glide reflection none yes

These properties help detect the type of isometry. In particular, the chart shows
that a glied reflection cannot belong to any of the other three types.
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