
MAT 320 projects
The numbers in brackets indicate how many people can work on a given

project. (For shorter projects, only two people are allowed to work together;
for longer projects, up to four people is fine. Of course, if two people want
to take up a longer project, they don’t have to cover every aspect of it).

1. Construction of reals. (2–3) We developed a set of axioms for
real numbers, but never discussed why an object satisfying these
axioms actually exists. A ”model” for real numbers can be obtained
via Dedekind cuts. You could find out about those, and/or about
some other interesting existence results: for instance, one can prove
directly that

√
2 (i.e. a root of the equation x2 = 2) exists in R.

2. Decimal presentations for rational and irrational numbers.(2)
There is a nice way to tell rational numbers from irrational by looking
at their decimal presentation.

3. Approximations by rationals. (2–4) Every number can be ap-
proximated by rational numbers. Typically, you’ll need to pick a
rational number with a large denominator to get closer to the given
number. For Liouville numbers, these approximations work really
well: roughly, very close to a given number there are rational num-
bers whose denominators are not too large. It turns out that Li-
ouville numbers are ”transcendental”; you can establish existence of
transcendentals, and even prove that e is a transcendental number.

4. The Cantor set. (2–3) This is a subset of [0, 1] which can be defined
in terms of ternary (base 3) presentation of real numbers. This set
has a number of interesting properties, and is related to ”fractals”.

5. Large and small sets. (2–4)A subset of R can be large or small
in a few different senses. For instance, we have finite and countable
sets (small) and uncountable sets (large). There are also sets that
are dense, i.e. contain points in any given small interval (large), or
nowhere dense, i.e. contain gaps everywhere (small). Finally, we
can talk about the measure (length) of a set, in particular, sets of
”measure 0” (small) and sets of ”full measure” (large). A set can
be large in one sense and small in the other sense. You can find out
about different definitions and the relation between them.

6. Euler’s number e.(2–3) We gave one definition of e in class. There
are a couple more, and you can find out why these definitions are
equivalent. You can also prove that e is irrational. You could also
find out how e is related to banking and compound interest.

7. Convergence tests for series. (2)In calculus, you might have seen
a number of convergence tests for infinite series, such as the Root test
and the Ratio test. Now you can find out why these tests actually
work.

8. Absolute convergence and conditional convergence. (2) A
convergent infinite series can converge absolutely or conditionally. (In
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the first case, a series made up of absolute values of the terms of the
original series converges; in the second case, it doesn’t.) A beautiful
theorem of Riemann says that you can ”shuffle” terms of a condition-
ally convergent series to obtain any given number as the sum of the
series!

9. Monotone functions. (2) These have some interesting proper-
ties. Theorem: a monotone function can be discontinuous only at
countably many points.

10. Compact sets. (2-4) Many theorems we talked (or will talk) about
(e.g. Nested Intervals Property, Bolzano-Weierstrass Theorem, con-
vergence of Cauchy’s sequences, Maximum theorem for continuous
functions) were stated for a closed interval [a, b]. They are in fact
true for all compact sets X ⊂ R. You can learn what a compact
set is, and why (some of) the theorems are true in this more general
situation. (Compact sets can be generalized to several dimensions,
and even to a much more general case of ”topological spaces”. This
is why they are so important).

11. Metric spaces. (2-4) The notions of limit, continuous function,
etc. can be defined not only for intervals (or other subsets of R), but
for some more general spaces (provided we have a ”distance” between
any two points of the space).

12. Newton’s method. (2) This is a recursive procedure for finding
roots of equations. (using derivatives, tangent lines, etc.) In partic-
ular, for the square root it gives the algorithm we discussed in class.
You should find out why Newton’s method works (at least in some
cases), not only how it works.

13. Uniform convergence of functions. (2-4) This is an important
topic we don’t have time for in class. You could learn about the
definition of uniform convergence (and how it’s different from point-
wise convergence), and prove an important theorem: if a sequence of
continuous functions converges uniformly, the limit is a continuous
functions. You could also mention applications to functions given
as a sum of power series. Uniform convergence also allows to find
derivatives or integrals of a limit of a sequence of functions.

14. Approximations of functions. (2-3) This project is related to
uniform convergence: we want to approximate a given function by
functions that are uniformly (i.e. at every point) close to a given
one. It turns out that evry continuous function on [a, b] can be ap-
proximated by polynomials (Stone- Weierstrass theorem).

15. A continuous, nowhere differentiable function. (2-3) It is easy
(why?) to find an example of a function that is continuous, but not
differentiable at a given point. A more interesting question is to find
a function which is continuous on [0, 1], but not differentiable at any
point of the interval. You’ll need uniform convergence to construct
such a function.
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16. Peano curve. (2–3) Sometimes theorems of mathematical analysis
contradict our intuition. For example, there exists a Peano curve:
a (continuous) curve that passes through every point of a square.
In other words, there exists a continuous surjective function from
an interval to a square. You’ll need to make sense of ”continuous
function to a square”, and use uniform convergence to construct a
Peano curve.


