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Abstract. Class notes for MAT319, Spring 2012. These summarize some of the dis-
cussions held in class, but are not intended to replace the class, recitation, or textbook
sections.

What does it mean, exactly, that sequence (xn) converges to limit a? In most proofs-
oriented analysis books, you will find an ε-definition of a limit, which is hard to digest when
you first see it. On the other hand, you probably remember from calculus that convergence
means that the terms xn of the sequence get closer and closer to A. The calculus description
is not precise and gives rise to a lot of questions. How close is “close”? If one term is close
to A, should the next be even closer, or can it be further out? In class, we studied a lot of
examples to make these notions precise. To pin down the idea of closedness, we considered
various neighborhoods of the limit point A.

Definition 1. Let A be a number (thought of as a point on the real line). A neighborhood
of A is any open interval centered at A.

A neighborhood can be large or small; the intervals (−100, 100) and (−.001, 001) are both
neighborhoods of 0, the intervals (−2, 0) and (−1.01,−.99) are neighborhoods of −1.

Now, for a sequence (xn) to converge to A, we require that the terms of the sequence
concentrate in any chosen neighborhood of A, no matter how small the neighborhood is.
More precisely, for any neighborhood that someone might choose, we must have that even-
tually, starting from a certain moment in the sequence, all terms xn are contained in that
chosen neighborhood. Note the word eventually: it means that in the beginning of the
sequence, there may be a lot of “junk” terms that are very far from A and do not fit into
the given neighborhood. However, if you move forward along the sequence, you must be
able to find a moment in a sequence where the junk stops, and all the terms coming after
that moment fit into the chosen neighborhood.

The idea of the previous paragraph is easier to articulate if we introduce a bit of jargon.

Definition 2. A tail of the sequence (xn) includes all its terms after a certain moment
(index). For example, (x5, x6, x7, x8, . . . ) and (x1000, x1001, x1002, x1003, . . . ) are two different
tails of (xn). Sometimes we will use the term N -tail to refer to all terms with indices greater
than N , i.e. the N -tail is xN+1, xN+2, . . . . For example, 100-tail is (x101, x102, x103, . . . ).

Note that while a tail is missing some terms in the beginning of the sequence, it must
include all subsequent terms once it starts. For instance, a sequence of terms

(x100, x102, x104, x106, . . . )
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is not a tail of (xn) because it misses odd-numbered terms x101, x103, . . . . A sequence
(x100, x102, x103, x104, . . . ) is not a tail because it misses x101, even though it includes all
terms from x102 on.

Now the requirements for a convergent sequence can be stated neatly:

Definition 3. (xn) converges to A if every neighborhood of A contains some tail of the
sequence (xn).

In other words, limxn = A means that every neighborhood captures a tail of our sequence
– but of course different neighborhoods capture different tails. A large neighborhood of A
might contain the whole sequence; for a very small neighborhood, you’ll probably have to
go pretty far out in the sequence before the required tail starts. Once the tail is in the
neighborhood, there’s no requirement on how the terms should behave – they do not have
to get closer and closer to the limit, increase or decrease, or follow any pattern.

Note that the above definition sounds unofficial, but it is mathematically rigorous: we
have specified the precise meaning of all the words we used.

Example. Using this definition, let’s show that the sequence ( 1
n) converges to 0. We

have to examine all possible neighborhoods of 0 and show that each of them captures a tail
of our sequence. For instance, if we take the neighborhood (− 1

10 ,
1
10), we notice that all

terms 1
11 , 1

12 , 1
13 , 1

14 ,... are positive numbers that are less than 1
10 , and thus are contained in

the interval (− 1
10 ,

1
10). Therefore, ( 1

11 ,
1
12 ,

1
13 , . . . ) is a tail captured by this neighborhood.

This is not the end of the proof though: we have to study all possible neighborhoods of
0, not just one neighborhood that we like. A general neighborhood of 0 is an open interval
symmetric about 0; we can write it as (−d, d) if it extends distance d on each side of 0. The
point ( 1

n) will be contained in this interval as long as ( 1
n) < d, or, in other words, whenever

n > 1
d . Thus, the tail (xN , xN+1, xN+2, . . . ) will be entirely contained in (−d, d) if we take

N to be any integer that is greater than 1
d .

A very similar argument shows that the sequence ( (−1)n

n ) also converges to 0. (Notice
that in this sequence, the terms alternate between positive and negativem jumping around
0. It is always helpful to write out a few first terms, (−1, 12 ,−

1
3 ,

1
4). For an (arbitrary!)

neighborhood (−d, d), we notice that the (positive or negative) number ( (−1)n

n ) = ± 1
n is

contained in (−d, d) whenever n > 1/d. As before, we now pick any integer N > d, and see
that (xN , xN+1, xN+2, . . . ) will be entirely contained in (−d, d).

Most textbooks, including Ross, use an epsilon-definition of the limit. Though less visual,
the more “formal” definition is often useful for calculations, when the sequence is given by a
complicated formula which is harder to plot and visualize. We will arrive at that definition
by translating neighborhoods-and-tails into formulas.

The definition of the limit says that an arbitrary neighborhood of the limit Amust capture
some tail of the sequence (xn). An arbitrary neighborhood of A is an open interval centered
at A; if it extends distance d on each side, we can write it as (A − d,A + d). Typically,
the Greek letter ε is used instead of d, so an arbitrary neighborhood can be written as
(A− ε, A+ ε). (Since it stands for a distance, ε is a positive number.) We can also replace
the phrase “the neighborhood contains some tail” by the phrase “we can find a number N
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such that the N -tail is contained in the neighborhood”. The statement

every neighborhood of A contains some tail of (xn)
can now be written as

for every ε > 0, the interval (A− ε, A+ ε) contains some tail of (xn)
and then as

for every ε > 0, we can find N such that the interval (A− ε, A+ ε) contains the N -tail of (xn).
If we recall that N -tail consists of all terms xn with n > N , we can rewrite the last statement
once again:

for every ε > 0, we can find N such that the interval (A− ε, A+ ε) contains xn whenever n > N .
Finally, we give a closer look to the statement “the interval (A− ε, A+ ε) contains xn”. It
means

A− ε < xn <A+ ε,

−ε < xn −A <ε,

|xn −A| <ε.
The last inequality can also be obtained in a more geometric way: “the interval (A−ε, A+ε)
contains xn” iff the distance between xn and A is less than ε. But the distance between xn
and A is exactly |xn − A|. Indeed, if a and b are two points on the real line, the distance
between them equals to b− a (if b > a, ie b to the right of a) or a− b (if b < a, ie b to the
left of a), or 0 if b = a, which gives that the distance is |a− b| in all cases.

Therefore, the final translation of our statement is

for every ε > 0, we can find N such that |xn −A| < ε whenever n > N .

Replacing “we can find” by more formal wording, “there exists”, we recover the definition
of the limit found in most books (compare Ross Definition 7.1).


