MAT 319, Spring 2012
Solutions to HW 8

1. Let f(z) be continuous on [0, 1], g(x) continuous on [1,2], and f(1) = g(1) = 5. Define a function h(z)
on [0, 2] by

) flx) ifo<az <l
h(x){g(x) ifl<x<2

Prove that h(z) is continuous at

(a)

=1

Let € > 0. Since f is continuous at 1, there exists 65 > 0 such that if z € [0,1] and |z — 1] < Jy,
then |f(x) —5| < e. Similarly, there exists d, > 0 such that if z € [1,2] and |z — 1] < dg,
then |g(z) — 5] < e. Let 6 = mindy,d,, and assume z is such that |z — 1| < 0. If z < 1, then
|h(z) — 5] = |f(x) — 5] < € because |x — 1| < d;. If z > 1, then |h(z) — 5| = |g(z) — 5] < ¢
because |z — 1| < d,. Therefore, |z —1| <§ = |h(z) — 5] < €. So h(x) is continuous at 5.

all other points xg.

The material point is that continuity is a local property. In mathematics, “local” means it is
determined by what happens in sufficiently small neighborhoods. In this case, if / is identical to
a known continuous function in some specific neighborhood of z(, then h must be continuous at
g, as well. This fact appears in the proofs below: in order to use the continuity of f and g to
prove the continuity of h, we need to first restrict our attention to a small neighborhood of zq
where h is either identical to f or identical to g.

i. Since we used an (e — §)-argument in part (a), let’s show how a sequence argument could

be used here. First, we’ll treat the case when 0 < zp < 1. Let (z,) be a sequence in [0, 2]
converging to zp. Since zp < 1, we can find an N-tail of (z,) that is always less than 1.
Therefore, for n > N, h(x,) = f(x,), and by the continuity of f at xo, this tail converges to
f(zo) = h(zo). Hence, h is convergent at xg whenever z < 1.
The argument is analogous when 1 < g < 2. Let (z,,) be a sequence in [0, 2] converging to xo.
There must be an M-tail that is always greater than 1. Restricting to this tail, h(z,) = g(z,),
and since g is continuous at xg, g(z,) — g(xo) = h(xg). Thus, h(z,) converges to h(zg), and
h is continuous at zg.

ii. For those who prefer ¢’s and §’s, suppose first that 0 < xy < 1. Let ¢ > 0. Since f is
continuous at xg, there exists d; > 0 such that if |z — z¢| < dy and 0 < x < 1 (because this
is the domain of f), then |f(x) — f(z0)| < e. Since h is only identical to f for z < 1, let
0 =min{dy,1 — x¢}. The purpose of the extra restriction is the following:

|zt —zo| <d = |x—mo|<1l—2xg
= x—29<1—xg
= <1
—  h(z) = f(2).
Therefore, if |z — 20| < § and z € domain(h), then |h(z) — h(zo)| = |f(x) — f(zo)| < e.
Similarly, if 1 < z¢ < 2, then there exists §; > 0 such that if |z — z¢| < §5 and 1 < 2 < 2,
then |g(x) — g(xo)| < €. Set § = min {d,, z9 — 1}. Therefore, if |x — x| < J, then 1 < z, and

[h(x) = h(zo)| = |g(x) — g(zo)| <e.

2. Let f(x) be continuous on [0, 1], g(z) continuous on [1,2]. Define a function h(z) on [0, 2] by

h(z) =

flz) fo<z<l1
glz) ifl<xz<2

Suppose that h(x) is continuous on [0, 2]. Prove that f(1) = g(1).
Let (z,) be a sequence converging to 1 such that every term is strictly greater than 1. If you like to



be more specific, you could choose z,, = 1+ %, as an example. The point is that h(z,) = g(x,,) for all
n, and both h and g are continuous at 1. Therefore, h(x,) — h(1) = f(1). But g(z,) — g(1). The
sequence cannot have two limits, and so f(1) = g(1).

3. Let f(x) be a continuous function. Define g(x) via

o(a) = {f(a:) if f(z) >0

0 otherwise.

Prove, using the e — ¢ definition, that g(x) is continuous. Use the following strategy. Let a be arbitrary.
We will divide the proof into cases based upon the value of f(a).

(a) Suppose that f(a) > 0. Since f is continuous at a, there exists 6; > 0 such that if |z — a| < 41,
then |f(x) — f(a)] < f(a). In particular, this implies that f(x) > 0 in this neighborhood of a.
Hence, for all |z — a| < 01, g(x) = f(z). Now let € > 0. Again by the continuity of f, we can find
d2 > 0 such that if |x —a| < &2, |f(x) — f(a)] < €. Set 6 = mindy, 2, and assume |z —a| < 4.
Consecutively using the facts that |« — a| is less than both §; and d2, we can conclude that

9(z) —g(a)] = [f(2) — fla)] <e

Therefore, g is continuous at a.

Like the proofs in question (1b), the proof here relies on the fact that g is identical to a f in a
neighborhood (given by d1) of a. Finding this neighborhood reduces the problem to the statement
that f is continuous at a.

(b) Suppose now that f(a) < 0. Then —f(a) > 0, and so there exists § > 0 such that |f(z) — f(a)] <
—f(a) whenever |z —a| < §. Thus, for all |z —a| < 0, f(x) < 0, and therefore g(x) = 0 = g(a).
This already implies that g is continuous at a; in fact, g is constant in a neighborhood of a.

(c) Suppose that f(a) = 0. Let ¢ > 0. Since f is continuous at a, we can find § > 0 such that if
|z —a| <0, then |f(x)| = |f(z) — f(a)| < e. Suppose |x —a| <. If f(x) >0, then 0 < f(z) <,
and so |g(z)| < e. If f(x) <0, then g(z) = 0 < e. In either case, |g(z) — g(a)| = |g(z)| < e. Thus,
g is continuous at a.

4. Does there exist a continuous function f(z) such that

1 _1 n
f () = ( n) for every n?

n

Yes. If you didn’t understand this problem, try sketching a graph to match the description below.

One way construct such a function is to define f on each interval [%H, H so that its graph is the line

n+1 n
segment joining the points (ﬁ_l, (7731 > and (%, (le) ) Since the line segments defined in this way

11
n+1? n
we can “glue” them together like in Problem 1 to get a continuous function on the set

G LLH — (0,1].

n=1

1 1

and |-, — | have the same value on the overlapping point x = %,

on consecutive intervals

So far, f is defined on (0, 1], and its graph is very jagged. Since f(1) = —1 is the point that is farthest
to the right, we can extend the graph of f in any continuous way to the right of z = 1 as long as it
meets up at the point (—1,1). Probably the easiest way is to simply declare that f(z) = —1 for all
x> 1.

As n — oo, f(1/n) tends to 0, so we must define f(0) = 0 to have a chance of making f continuous
everywhere. Therefore, we might as well define f to be identically 0 on (—oo,0], thus guaranteeing
that f will be continuous at negative values of x.



All that is left is to show that f is continuous at 0. The idea is that since |f(1/n)| = 1/n, and that
the graph of f zig-zags between its values on the set {|n € N}, we can see that in fact, | f(z)| < |z|
for all z € R. Proving this fact is a bit technically annoying, but since the purpose of this problem
was to help you develop your intuition, I won’t go through the details. The sketch of the graph of this
function should convince you that it is correct. Therefore, f is indeed continuous at 0.

If you prefer simple-looking formulas, we can find another function satisfying the desired conditions if
we assume some basic properties of cosine:

(@) xcos(%) ifx#0
xTr) =

0 ifx =0.
First, T is a rational function, and so continuous when x # 0. cos (7/x) is a composition of continuous
functions, and so continuous. zcos (7w/z) is a product of continuous functions. This proves that f is
continuous at every nonzero point x. To show that f is continuous at 0, let € > 0 and take § = e. If
|z| < d, then either x =0, and f(z) =0 < ¢, or x # 0 and

£(@)] = |weos (2)| < Jal <=

(We used the fact that |cosf| <1 for any 6 € R.) Thus, f is continuous at 0 as well.



