1. Let \(f(x) \) be continuous on \([0, 1]\), \(g(x) \) continuous on \([1, 2]\), and \(f(1) = g(1) = 5 \). Define a function \(h(x) \) on \([0, 2]\) by

\[
h(x) = \begin{cases}
 f(x) & \text{if } 0 \leq x \leq 1 \\
 g(x) & \text{if } 1 < x \leq 2.
\end{cases}
\]

Prove that \(h(x) \) is continuous at

(a) \(x = 1 \).

Let \(\epsilon > 0 \). Since \(f \) is continuous at 1, there exists \(\delta_f > 0 \) such that if \(x \in [0, 1] \) and \(|x - 1| < \delta_f \), then \(|f(x) - 5| < \epsilon \). Similarly, there exists \(\delta_g > 0 \) such that if \(x \in [1, 2] \) and \(|x - 1| < \delta_g \), then \(|g(x) - 5| < \epsilon \). Let \(\delta = \min\{\delta_f, \delta_g\} \), and assume \(x \) is such that \(|x - 1| < \delta \). If \(x \leq 1 \), then

\[
|h(x) - 5| = |f(x) - 5| < \epsilon \quad \text{because} \quad |x - 1| < \delta_f.
\]

If \(x > 1 \), then \(|h(x) - 5| = |g(x) - 5| < \epsilon \) because \(|x - 1| < \delta_g \). Therefore, \(|x - 1| < \delta \implies |h(x) - 5| < \epsilon \). So \(h(x) \) is continuous at 5.

(b) all other points \(x_0 \).

The material point is that continuity is a local property. In mathematics, “local” means it is determined by what happens in sufficiently small neighborhoods. In this case, if \(h \) is identical to a known continuous function in some specific neighborhood of \(x_0 \), then \(h \) must be continuous at \(x_0 \), as well. This fact appears in the proofs below: in order to use the continuity of \(f \) and \(g \) to prove the continuity of \(h \), we need to first restrict our attention to a small neighborhood of \(x_0 \) where \(h \) is either identical to \(f \) or identical to \(g \).

i. Since we used an \((\epsilon - \delta)\)-argument in part (a), let’s show how a sequence argument could be used here. First, we’ll treat the case when \(0 \leq x_0 < 1 \). Let \((x_n) \) be a sequence in \([0, 2]\) converging to \(x_0 \). Since \(x_0 < 1 \), we can find an \(N \)-tail of \((x_n) \) that is always less than 1. Therefore, for \(n > N \), \(h(x_n) = f(x_n) \), and by the continuity of \(f \) at \(x_0 \), this tail converges to \(f(x_0) = h(x_0) \). Hence, \(h \) is convergent at \(x_0 \) whenever \(x_0 < 1 \).

The argument is analogous when \(1 < x_0 \leq 2 \). Let \((x_n) \) be a sequence in \([0, 2]\) converging to \(x_0 \). There must be an \(M \)-tail that is always greater than 1. Restricting to this tail, \(h(x_n) = g(x_n) \), and since \(g \) is continuous at \(x_0 \), \(g(x_n) \rightarrow g(x_0) = h(x_0) \). Thus, \(h(x_n) \) converges to \(h(x_0) \), and \(h \) is continuous at \(x_0 \).

ii. For those who prefer \(\epsilon \)'s and \(\delta \)'s, suppose first that \(0 \leq x_0 < 1 \). Let \(\epsilon > 0 \). Since \(f \) is continuous at \(x_0 \), there exists \(\delta_f > 0 \) such that if \(|x - x_0| < \delta_f \) and \(0 \leq x \leq 1 \) (because this is the domain of \(f \)), then \(|f(x) - f(x_0)| < \epsilon \). Since \(h \) is only identical to \(f \) for \(x \leq 1 \), let

\[
\delta = \min\{\delta_f, 1 - x_0\}.
\]

The purpose of the extra restriction is the following:

\[
|x - x_0| < \delta \implies |x - x_0| < 1 - x_0 \implies x - x_0 < 1 - x_0 \implies x < 1 \implies h(x) = f(x).
\]

Therefore, if \(|x - x_0| < \delta \) and \(x \in \text{domain}(h) \), then \(|h(x) - h(x_0)| = |f(x) - f(x_0)| < \epsilon \).

Similarly, if \(1 < x_0 \leq 2 \), then there exists \(\delta_g > 0 \) such that if \(|x - x_0| < \delta_g \) and \(1 \leq x \leq 2 \), then \(|g(x) - g(x_0)| < \epsilon \). Set \(\delta = \min\{\delta_g, x_0 - 1\} \). Therefore, if \(|x - x_0| < \delta \), then \(1 < x \), and so

\[
|h(x) - h(x_0)| = |g(x) - g(x_0)| < \epsilon.
\]

2. Let \(f(x) \) be continuous on \([0, 1]\), \(g(x) \) continuous on \([1, 2]\). Define a function \(h(x) \) on \([0, 2]\) by

\[
h(x) = \begin{cases}
 f(x) & \text{if } 0 \leq x \leq 1 \\
 g(x) & \text{if } 1 < x \leq 2.
\end{cases}
\]

Suppose that \(h(x) \) is continuous on \([0, 2]\). Prove that \(f(1) = g(1) \).

Let \((x_n) \) be a sequence converging to \(1 \) such that every term is strictly greater than 1. If you like to
3. Let f be a continuous function. Define $g(x)$ via

$$
g(x) = \begin{cases}
 f(x) & \text{if } f(x) > 0 \\
 0 & \text{otherwise.}
\end{cases}
$$

Prove, using the $\epsilon - \delta$ definition, that $g(x)$ is continuous. Use the following strategy. Let a be arbitrary. We will divide the proof into cases based upon the value of $f(a)$.

(a) Suppose that $f(a) > 0$. Since f is continuous at a, there exists $\delta_1 > 0$ such that if $|x - a| < \delta_1$, then $|f(x) - f(a)| < f(a)$. In particular, this implies that $f(x) > 0$ in this neighborhood of a. Hence, for all $|x - a| < \delta_1$, $g(x) = f(x)$. Now let $\epsilon > 0$. Again by the continuity of f, we can find $\delta_2 > 0$ such that if $|x - a| < \delta_2$, $|f(x) - f(a)| < \epsilon$. Set $\delta = \min \delta_1, \delta_2$, and assume $|x - a| < \delta$. Consecutively using the facts that $|x - a|$ is less than both δ_1 and δ_2, we can conclude that $|g(x) - g(a)| = |f(x) - f(a)| < \epsilon$.

Therefore, g is continuous at a. Like the proofs in question (1b), the proof here relies on the fact that g is identical to f in a neighborhood (given by δ_1) of a. Finding this neighborhood reduces the problem to the statement that f is continuous at a.

(b) Suppose now that $f(a) < 0$. Then $-f(a) > 0$, and so there exists $\delta > 0$ such that $|f(x) - f(a)| < -f(a)$ whenever $|x - a| < \delta$. Thus, for all $|x - a| < \delta$, $f(x) > 0$, and therefore $g(x) = 0 = g(a)$.

This already implies that g is continuous at a; in fact, g is constant in a neighborhood of a.

(c) Suppose that $f(a) = 0$. Let $\epsilon > 0$. Since f is continuous at a, we can find $\delta > 0$ such that if $|x - a| < \delta$, then $|f(x)| = |f(x) - f(a)| < \epsilon$. Suppose $|x - a| < \delta$. If $f(x) > 0$, then $0 < f(x) < \epsilon$, and so $|g(x)| < \epsilon$. If $f(x) \leq 0$, then $g(x) = 0 < \epsilon$. In either case, $|g(x) - g(a)| = |g(x)| < \epsilon$. Thus, g is continuous at a.

4. Does there exist a continuous function $f(x)$ such that

$$
f \left(\frac{1}{n} \right) = \frac{(-1)^n}{n} \text{ for every } n?$$

Yes. If you didn’t understand this problem, try sketching a graph to match the description below.

One way construct such a function is to define f on each interval $\left[\frac{1}{n+1}, \frac{1}{n} \right]$ so that its graph is the line segment joining the points $\left(\frac{1}{n+1}, \frac{(-1)^{n+1}}{n+1} \right)$ and $\left(\frac{1}{n}, \frac{(-1)^n}{n} \right)$. Since the line segments defined in this way on consecutive intervals $\left[\frac{1}{n+1}, \frac{1}{n} \right]$ and $\left[\frac{1}{n}, \frac{1}{n-1} \right]$ have the same value on the overlapping point $x = \frac{1}{n}$, we can “glue” them together like in Problem 1 to get a continuous function on the set

$$
\cup_{n=1}^{\infty} \left[\frac{1}{n+1}, \frac{1}{n} \right] = (0, 1].
$$

So far, f is defined on $(0, 1]$, and its graph is very jagged. Since $f(1) = -1$ is the point that is farthest to the right, we can extend the graph of f in any continuous way to the right of $x = 1$ as long as it meets up at the point $(-1, 1)$. Probably the easiest way is to simply declare that $f(x) = -1$ for all $x > 1$.

As $n \to \infty$, $f(1/n)$ tends to 0, so we must define $f(0) = 0$ to have a chance of making f continuous everywhere. Therefore, we might as well define f to be identically 0 on $(-\infty, 0)$, thus guaranteeing that f will be continuous at negative values of x.

All that is left is to show that f is continuous at 0. The idea is that since $|f(1/n)| = 1/n$, and that the graph of f zig-zags between its values on the set \(\{ \frac{1}{n} | n \in \mathbb{N} \} \), we can see that in fact, $|f(x)| \leq |x|$ for all $x \in \mathbb{R}$. Proving this fact is a bit technically annoying, but since the purpose of this problem was to help you develop your intuition, I won’t go through the details. The sketch of the graph of this function should convince you that it is correct. Therefore, f is indeed continuous at 0.

If you prefer simple-looking formulas, we can find another function satisfying the desired conditions if we assume some basic properties of cosine:

$$f(x) = \begin{cases}
 x \cos \left(\frac{\pi}{x} \right) & \text{if } x \neq 0 \\
 0 & \text{if } x = 0.
\end{cases}$$

First, $\frac{\pi}{x}$ is a rational function, and so continuous when $x \neq 0$. $\cos (\pi/x)$ is a composition of continuous functions, and so continuous. $x \cos (\pi/x)$ is a product of continuous functions. This proves that f is continuous at every nonzero point x. To show that f is continuous at 0, let $\epsilon > 0$ and take $\delta = \epsilon$. If $|x| < \delta$, then either $x = 0$, and $f(x) = 0 < \epsilon$, or $x \neq 0$ and

$$|f(x)| = \left| x \cos \left(\frac{\pi}{x} \right) \right| \leq |x| < \delta = \epsilon.$$

(We used the fact that $|\cos \theta| \leq 1$ for any $\theta \in \mathbb{R}$.) Thus, f is continuous at 0 as well.