
MAT 319, Spring 2012
Solutions to HW 8

1. Let f(x) be continuous on [0, 1], g(x) continuous on [1, 2], and f(1) = g(1) = 5. De�ne a function h(x)
on [0, 2] by

h(x) =

{
f(x) if 0 ≤ x ≤ 1

g(x) if 1 < x ≤ 2.

Prove that h(x) is continuous at

(a) x = 1.
Let ε > 0. Since f is continuous at 1, there exists δf > 0 such that if x ∈ [0, 1] and |x− 1| < δf ,
then |f(x)− 5| < ε. Similarly, there exists δg > 0 such that if x ∈ [1, 2] and |x− 1| < δg,
then |g(x)− 5| < ε. Let δ = min δf , δg, and assume x is such that |x− 1| < δ. If x ≤ 1, then
|h(x)− 5| = |f(x)− 5| < ε because |x− 1| < δf . If x > 1, then |h(x)− 5| = |g(x)− 5| < ε
because |x− 1| < δg. Therefore, |x− 1| < δ =⇒ |h(x)− 5| < ε. So h(x) is continuous at 5.

(b) all other points x0.
The material point is that continuity is a local property. In mathematics, �local� means it is
determined by what happens in su�ciently small neighborhoods. In this case, if h is identical to
a known continuous function in some speci�c neighborhood of x0, then h must be continuous at
x0, as well. This fact appears in the proofs below: in order to use the continuity of f and g to
prove the continuity of h, we need to �rst restrict our attention to a small neighborhood of x0
where h is either identical to f or identical to g.

i. Since we used an (ε− δ)-argument in part (a), let's show how a sequence argument could
be used here. First, we'll treat the case when 0 ≤ x0 < 1. Let (xn) be a sequence in [0, 2]
converging to x0. Since x0 < 1, we can �nd an N -tail of (xn) that is always less than 1.
Therefore, for n > N , h(xn) = f(xn), and by the continuity of f at x0, this tail converges to
f(x0) = h(x0). Hence, h is convergent at x0 whenever x0 < 1.
The argument is analogous when 1 < x0 ≤ 2. Let (xn) be a sequence in [0, 2] converging to x0.
There must be anM -tail that is always greater than 1. Restricting to this tail, h(xn) = g(xn),
and since g is continuous at x0, g(xn)→ g(x0) = h(x0). Thus, h(xn) converges to h(x0), and
h is continuous at x0.

ii. For those who prefer ε's and δ's, suppose �rst that 0 ≤ x0 < 1. Let ε > 0. Since f is
continuous at x0, there exists δf > 0 such that if |x− x0| < δf and 0 ≤ x ≤ 1 (because this
is the domain of f), then |f(x)− f(x0)| < ε. Since h is only identical to f for x ≤ 1, let
δ = min {δf , 1− x0}. The purpose of the extra restriction is the following:

|x− x0| < δ =⇒ |x− x0| < 1− x0
=⇒ x− x0 < 1− x0
=⇒ x < 1

=⇒ h(x) = f(x).

Therefore, if |x− x0| < δ and x ∈ domain(h), then |h(x)− h(x0)| = |f(x)− f(x0)| < ε.
Similarly, if 1 < x0 ≤ 2, then there exists δg > 0 such that if |x− x0| < δg and 1 ≤ x ≤ 2,
then |g(x)− g(x0)| < ε. Set δ = min {δg, x0 − 1}. Therefore, if |x− x0| < δ, then 1 < x, and
so

|h(x)− h(x0)| = |g(x)− g(x0)| < ε.

2. Let f(x) be continuous on [0, 1], g(x) continuous on [1, 2]. De�ne a function h(x) on [0, 2] by

h(x) =

{
f(x) if 0 ≤ x ≤ 1

g(x) if 1 < x ≤ 2.

Suppose that h(x) is continuous on [0, 2]. Prove that f(1) = g(1).
Let (xn) be a sequence converging to 1 such that every term is strictly greater than 1. If you like to
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be more speci�c, you could choose xn = 1+ 1
n , as an example. The point is that h(xn) = g(xn) for all

n, and both h and g are continuous at 1. Therefore, h(xn) → h(1) = f(1). But g(xn) → g(1). The
sequence cannot have two limits, and so f(1) = g(1).

3. Let f(x) be a continuous function. De�ne g(x) via

g(x) =

{
f(x) if f(x) > 0

0 otherwise.

Prove, using the ε−δ de�nition, that g(x) is continuous. Use the following strategy. Let a be arbitrary.
We will divide the proof into cases based upon the value of f(a).

(a) Suppose that f(a) > 0. Since f is continuous at a, there exists δ1 > 0 such that if |x− a| < δ1,
then |f(x)− f(a)| < f(a). In particular, this implies that f(x) > 0 in this neighborhood of a.
Hence, for all |x− a| < δ1, g(x) = f(x). Now let ε > 0. Again by the continuity of f , we can �nd
δ2 > 0 such that if |x− a| < δ2, |f(x)− f(a)| < ε. Set δ = min δ1, δ2, and assume |x− a| < δ.
Consecutively using the facts that |x− a| is less than both δ1 and δ2, we can conclude that

|g(x)− g(a)| = |f(x)− f(a)| < ε.

Therefore, g is continuous at a.
Like the proofs in question (1b), the proof here relies on the fact that g is identical to a f in a
neighborhood (given by δ1) of a. Finding this neighborhood reduces the problem to the statement
that f is continuous at a.

(b) Suppose now that f(a) < 0. Then −f(a) > 0, and so there exists δ > 0 such that |f(x)− f(a)| <
−f(a) whenever |x− a| < δ. Thus, for all |x− a| < δ, f(x) < 0, and therefore g(x) = 0 = g(a).
This already implies that g is continuous at a; in fact, g is constant in a neighborhood of a.

(c) Suppose that f(a) = 0. Let ε > 0. Since f is continuous at a, we can �nd δ > 0 such that if
|x− a| < δ, then |f(x)| = |f(x)− f(a)| < ε. Suppose |x− a| < δ. If f(x) > 0, then 0 < f(x) < ε,
and so |g(x)| < ε. If f(x) ≤ 0, then g(x) = 0 < ε. In either case, |g(x)− g(a)| = |g(x)| < ε. Thus,
g is continuous at a.

4. Does there exist a continuous function f(x) such that

f

(
1

n

)
=

(−1)n

n
for every n?

Yes. If you didn't understand this problem, try sketching a graph to match the description below.

One way construct such a function is to de�ne f on each interval
[

1
n+1 ,

1
n

]
so that its graph is the line

segment joining the points
(

1
n+1 ,

(−1)n+1

n+1

)
and

(
1
n ,

(−1)n
n

)
. Since the line segments de�ned in this way

on consecutive intervals
[

1
n+1 ,

1
n

]
and

[
1
n ,

1
n−1

]
have the same value on the overlapping point x = 1

n ,

we can �glue� them together like in Problem 1 to get a continuous function on the set

∞⋃
n=1

[
1

n+ 1
,
1

n

]
= (0, 1].

So far, f is de�ned on (0, 1], and its graph is very jagged. Since f(1) = −1 is the point that is farthest
to the right, we can extend the graph of f in any continuous way to the right of x = 1 as long as it
meets up at the point (−1, 1). Probably the easiest way is to simply declare that f(x) = −1 for all
x > 1.
As n → ∞, f(1/n) tends to 0, so we must de�ne f(0) = 0 to have a chance of making f continuous
everywhere. Therefore, we might as well de�ne f to be identically 0 on (−∞, 0], thus guaranteeing
that f will be continuous at negative values of x.
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All that is left is to show that f is continuous at 0. The idea is that since |f(1/n)| = 1/n, and that
the graph of f zig-zags between its values on the set

{
1
n |n ∈ N

}
, we can see that in fact, |f(x)| ≤ |x|

for all x ∈ R. Proving this fact is a bit technically annoying, but since the purpose of this problem
was to help you develop your intuition, I won't go through the details. The sketch of the graph of this
function should convince you that it is correct. Therefore, f is indeed continuous at 0.

If you prefer simple-looking formulas, we can �nd another function satisfying the desired conditions if
we assume some basic properties of cosine:

f(x) =

{
x cos

(
π
x

)
if x 6= 0

0 if x = 0.

First, πx is a rational function, and so continuous when x 6= 0. cos (π/x) is a composition of continuous
functions, and so continuous. x cos (π/x) is a product of continuous functions. This proves that f is
continuous at every nonzero point x. To show that f is continuous at 0, let ε > 0 and take δ = ε. If
|x| < δ, then either x = 0, and f(x) = 0 < ε, or x 6= 0 and

|f(x)| =
∣∣∣x cos(π

x

)∣∣∣ ≤ |x| < δ = ε.

(We used the fact that |cos θ| ≤ 1 for any θ ∈ R.) Thus, f is continuous at 0 as well.
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