
MAT 319, Spring 2012
Solutions to HW 7

1. Prove that the function f(x) = 4x− 5 is continuous at every point x0.

(a) using the sequences de�nition.
Let (xn) be a sequence converging to x0. f(xn) = 4xn − 5. Our limit product rule implies that
(4xn) converges to 4x0. Our limit sum formula implies that (4xn − 5) converges to 4x0−5. Thus,
f(xn) converges to f(x0), and so f is continuous at x0.

(b) using the ε− δ de�nition.
Let ε > 0 be arbitrary. We must �nd a δ > 0 such that if |x− x0| < δ implies |f(x)− f (x0)| < ε.

|f(x)− f(x0)| = |(4x− 5)− (4x0 − 5)| = 4 |x− x0| .

Therefore, if we δ = ε/4, that is, if we only consider values of x such that |x− x0| < ε
4 , then

|f(x)− f (x0)| < ε as desired.

2. In class, we considered the function f(x), where

f(x) =

{
1 if x ≥ 0

0 if x < 0.

Prove that this function is continuous at x0 = − 1
2 .

(a) using the sequences de�nition.
Let (xn) be a sequence converging to − 1

2 . Then there must be a tail of this sequence that is
always negative: there exists N such that if n > N , then xn < 0. Therefore, if n > N , then
f(xn) = 0. The sequence (f (xn)) has a tail that is constantly 0, and so the sequence converges
to 0 = f(− 1

2 ). Therefore, f is continuous at − 1
2 .

(b) using the ε− δ de�nition.
Let ε > 0, and let δ = 1/2. Suppose that |x− x0| < δ. Then

∣∣x+ 1
2

∣∣ < 1
2 , so that, in particular,

x+
1

2
<

1

2
x < 0.

Therefore, since x < 0, we know that f(x) = 0. Thus, |f(x)− f(x0)| = |0− 0| = 0 < ε. Therefore,
f is continuous at x0.

3. Consider the function g(x), where

g(x) =

{
1 if x is a rational number

0 if x is an irrational number.

Prove that g(x) is discontinuous at every point,

(a) using the sequences de�nition.
First we will show that g is discontinuous at every irrational number. Suppose that x0 is irrational.
We know that there exists a sequence (xn) consisting only of rational numbers that converges to
x0. But then g(xn) = 1 constantly, and cannot converge to g(x0) = 0.
Now let x0 be a rational number. We know that there is a sequence (xn) consisting of only
irrational numbers converging to x0. But then g(xn) = 0 constantly, and cannot converge to
g(x0) = 1.
Therefore, g(x) is discontinuous at every point.
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(b) using the ε− δ de�nition.
Let x0 be any number. Now must �nd a value of ε such that no value of δ �works.� Let ε = 1

2 . (In
fact, any value smaller than 1 will work.) Let δ > 0 be arbitrary. We must �nd x ∈ (x0 − δ, x0 + δ)
such that |g(x)− g(x0)| > 1

2 . If x0 is irrational, we let x be a rational number in (x0 − δ, x0 + δ),
and if x0 is rational, we choose x to be an irrational number in the same interval. In either case
|g(x)− g(x0)| = 1 > 1

2 , as desired.

4. Consider the function h(x), where

h(x) =

{
x2 if x > 0

0 if x ≤ 0.

Is h(x) continuous at 0? Prove your answer (from any de�nition).
h is continuous at 0. We will prove this using the ε − δ de�nition. Let ε > 0, and set δ =

√
ε.

Suppose |x| < δ. If x ≤ 0, then |h(x)| = 0 < ε. If x > 0, then |h(x)| =
∣∣x2∣∣ < δ2 = ε. Therefore,

|x| < δ =⇒ |h(x)| < ε.
Alternatively, we could have used the sequences de�nition. Let (xn) be a sequence converging to 0. We
must prove that h(xn) also converges to 0. Let ε > 0. We can �nd a tail of (xn) such that |xn| <

√
ε.

As h(xn) is either 0 or x2n, it will be smaller than ε in this tail. Therefore, (h (xn))→ 0 as desired.

5. Suppose that f(x) is a continuous function. Prove (from any de�nition) that the function 7f(x) is also
continuous.
This is easier to prove with the sequences de�nition. Let x0 be any number, and let (xn) be a sequence
converging to x0. Since f is continuous, (f(xn)) converges to f(x0). Therefore, our sequence limit
theorem implies that (7f(xn)) converges to 7f(x0). So 7f(x) is continuous at x0. Since x0 was
arbitrary, f is continuous everywhere.
To use the ε − δ de�nition, let x0 be any number and let ε > 0. We want to �nd a δ such that if
|x− x0| < δ, then |7f(x)− 7f(x0)| < ε. Since f is continuous and ε

7 > 0, we can �nd δ > 0 such that
|f(x)− f(x0)| < ε

7 whenever |x− x0| < δ. This immediately implies the desired conclusion.
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