MAT 319, Spring 2012 Solutions to HW 5

- 1. It was shown in class that $2^n > n$ for all positive integers n.
 - (a) Since $2^n > n$, and n diverges to $+\infty$, Problem 3a on Homework 4 implies that (2^n) diverges to $+\infty$ as well.

For a more basic proof coming straight from the definitions: Let $\alpha > 0$. We must find a tail of (2^n) that is always greater than α . Let $N > \alpha$. If n > N, then

$$2^n > n > N > \alpha.$$

So the *N*-tail satisfies our requirement.

- (b) Prove that (¹/_{2ⁿ}) converges to 0.
 Since (2ⁿ) is a sequence of positive terms diverging to +∞, (¹/_{2ⁿ}) converges to 0.
- 2. Prove that $\sqrt{5}$ is irrational.

Suppose that $\sqrt{5}$ is rational. Then we can express $\sqrt{5}$ uniquely as $\frac{p}{q}$, where p, q are coprime positive integers. Therefore, $p^2 = 5q^2$, so p^2 is a multiple of 5. Since 5 is prime, this means that p must also be a multiple of 5: p = 5k for some positive integer k. Thus,

$$5q^2 = p^2 = (5k)^2 = 25k^2.$$

Therefore, $q^2 = 5k^2$, showing that q^2 , whence q, is also a multiple of 5. Thus, we have shown that p and q are both multiples of 5, contradicting the fact that they are coprime.

- 3. Let (x_n) be an increasing sequence.
 - (a) Prove that (x_n) is bounded below.

Since (x_n) is increasing, x_1 is a lower bound. Therefore (x_n) is bounded below. For a very rigorous proof of this fact, we can proceed by induction: We know that $x_n < x_{n+1}$ for each positive integer n. Thus, $x_1 < x_2$. Suppose $x_1 < x_k$ for some integer k. Then $x_1 < x_k < x_{k+1}$, and so $x_1 < x_{k+1}$ as well. By induction, $x_1 \leq x_n$ for all n. QED

- (b) Suppose that (x_n) is not bounded above. Prove that (x_n) diverges to $+\infty$.
- Let $\alpha > 0$. We must find a tail of (x_n) that is greater than α . We start by finding a single element greater than α . Since (x_n) is not bounded above, α cannot be an upper bound for the sequence. Therefore, there must exist some x_N that is greater than α . To conclude the argument, we remember that (x_n) is increasing. So

$$\alpha < x_N < x_{N+1} < x_{N+2} < \cdots$$

In particular, the N-tail of (x_n) is always greater than α .

4.

(a) Prove that $1 \neq 0$.

In this proof, the assumption that the set of real numbers has more than 1 element is 100% necessary.

Assume, for contradiction, that 1 = 0. Let $a \in \mathbb{R}$. By Axiom M3 and Theorem 3.1(ii),

$$a = a \cdot 1 = a \cdot 0 = 0.$$

Thus, we have shown that 0 is the only element of \mathbb{R} , contradicting the assumption that R has at least two elements.

(b) Prove that $0 \leq 1$.

Assume that $1 \le 0$. We apply Axiom O4 to add -1 to both sides of the inequality to get $0 \le -1$. Since -1 is therefore "non-negative", we can apply Axiom O5 to multiply $1 \le 0$ by -1:

$$1(-1) \leq 0(-1)$$

 $-1 \leq 0.$

Hence, $0 \le -1$ and $-1 \le 0$. Therefore, by Axiom O2, 0 = -1. Adding 1 to this equality yields 1 = 0. Thus we have proven that either 0 = 1 or our assumption was flawed and in fact 0 < 1. In either case, $0 \le 1$.

- 5. Question 4.6 Let S be a nonempty bounded subset of \mathbb{R} .
 - (a) Prove that inf S ≤ sup S.
 Let s ∈ S. Since inf S is a lower bound of S, and sup S is an upper bound,

$$\inf S \le s \le \sup S.$$

- (b) What can you say about S if inf S = sup S?
 We showed above that inf S ≤ s ≤ sup S for all elements s ∈ S. Let A := inf S = sup S, so that A ≤ s ≤ A for all s ∈ S. This can only be true if A = s, and so S has only one element, namely A.
- 6. Question 4.7 Let S and T be nonempty bounded sets of \mathbb{R} .
 - (a) Prove that if S ⊆ T, then inf T ≤ inf S ≤ sup S ≤ sup T. sup T is an upper bound for T, and inf T is a lower bound. Thus, for every t ∈ T, inf T ≤ t ≤ sup T. If s ∈ S, then s ∈ T as well, and so inf T ≤ s ≤ sup T. Therefore, sup T is an upper bound for S, and inf T is a lower bound. Since sup S is the LEAST upper bound for S, sup S ≤ sup T. Likewise, inf T ≤ inf S because inf S is the GREATEST lower bound of S. Combining this with part (a) of the last question shows

$$\inf T \le \inf S \le \sup S \le \sup T$$