
MAT 319, Spring 2012
Solutions to HW 5

1. It was shown in class that 2n > n for all positive integers n.

(a) Since 2n > n, and n diverges to +∞, Problem 3a on Homework 4 implies that (2n) diverges to
+∞ as well.
For a more basic proof coming straight from the de�nitions: Let α > 0. We must �nd a tail of
(2n) that is always greater than α. Let N > α. If n > N , then

2n > n > N > α.

So the N -tail satis�es our requirement.

(b) Prove that
(

1
2n

)
converges to 0.

Since (2n) is a sequence of positive terms diverging to +∞,
(

1
2n

)
converges to 0.

2. Prove that
√
5 is irrational.

Suppose that
√
5 is rational. Then we can express

√
5 uniquely as p

q , where p, q are coprime positive

integers. Therefore, p2 = 5q2, so p2 is a multiple of 5. Since 5 is prime, this means that p must also be
a multiple of 5: p = 5k for some positive integer k. Thus,

5q2 = p2 = (5k)2 = 25k2.

Therefore, q2 = 5k2, showing that q2, whence q, is also a multiple of 5. Thus, we have shown that p
and q are both multiples of 5, contradicting the fact that they are coprime.

3. Let (xn) be an increasing sequence.

(a) Prove that (xn) is bounded below.
Since (xn) is increasing, x1 is a lower bound. Therefore (xn) is bounded below.
For a very rigorous proof of this fact, we can proceed by induction: We know that xn < xn+1 for
each positive integer n. Thus, x1 < x2. Suppose x1 < xk for some integer k. Then x1 < xk <
xk+1, and so x1 < xk+1 as well. By induction, x1 ≤ xn for all n. QED

(b) Suppose that (xn) is not bounded above. Prove that (xn) diverges to +∞.
Let α > 0. We must �nd a tail of (xn) that is greater than α. We start by �nding a single
element greater than α. Since (xn) is not bounded above, α cannot be an upper bound for the
sequence. Therefore, there must exist some xN that is greater than α. To conclude the argument,
we remember that (xn) is increasing. So

α < xN < xN+1 < xN+2 < · · · .

In particular, the N -tail of (xn) is always greater than α.

4.

(a) Prove that 1 6= 0.
In this proof, the assumption that the set of real numbers has more than 1 element is 100%
necessary.
Assume, for contradiction, that 1 = 0. Let a ∈ R. By Axiom M3 and Theorem 3.1(ii),

a = a · 1 = a · 0 = 0.

Thus, we have shown that 0 is the only element of R, contradicting the assumption that R has at
least two elements.
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(b) Prove that 0 ≤ 1.
Assume that 1 ≤ 0. We apply Axiom O4 to add −1 to both sides of the inequality to get 0 ≤ −1.
Since −1 is therefore �non-negative�, we can apply Axiom O5 to multiply 1 ≤ 0 by −1:

1(−1) ≤ 0(−1)
−1 ≤ 0.

Hence, 0 ≤ −1 and −1 ≤ 0. Therefore, by Axiom O2, 0 = −1. Adding 1 to this equality yields
1 = 0. Thus we have proven that either 0 = 1 or our assumption was �awed and in fact 0 < 1. In
either case, 0 ≤ 1.

5. Question 4.6 Let S be a nonempty bounded subset of R.

(a) Prove that inf S ≤ supS.
Let s ∈ S. Since inf S is a lower bound of S, and supS is an upper bound,

inf S ≤ s ≤ supS.

(b) What can you say about S if inf S = supS?
We showed above that inf S ≤ s ≤ supS for all elements s ∈ S. Let A := inf S = supS, so that
A ≤ s ≤ A for all s ∈ S. This can only be true if A = s, and so S has only one element, namely
A.

6. Question 4.7 Let S and T be nonempty bounded sets of R.

(a) Prove that if S ⊆ T , then inf T ≤ inf S ≤ supS ≤ supT .
supT is an upper bound for T , and inf T is a lower bound. Thus, for every t ∈ T , inf T ≤ t ≤ supT .
If s ∈ S, then s ∈ T as well, and so inf T ≤ s ≤ supT . Therefore, supT is an upper bound for
S, and inf T is a lower bound. Since supS is the LEAST upper bound for S, supS ≤ supT .
Likewise, inf T ≤ inf S because inf S is the GREATEST lower bound of S. Combining this with
part (a) of the last question shows

inf T ≤ inf S ≤ supS ≤ supT

.
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