Please prove (or explain as appropriate) all your answers.

Question 1. Find the following limits using limit laws (section 9). Explain carefully which theorems you used at each step.

(a)
\[x_n = \frac{2n - 1}{3n + 2} \]

(b)
\[x_n = \frac{7n^3 - n^2 + 1}{2n + 5n^3 - 3} \]

(c)
\[x_n = \frac{n}{n^4 + n^3 + n^2 - n + 1} \]

Question 2. (a) Suppose that \((x_n) \) converges and \((y_n) \) does not. Prove that \((x_n + y_n) \) diverges.

(b) Suppose that both sequences \((x_n) \) and \((y_n) \) diverge. Is it possible that \((x_n + y_n) \) converges? (Prove or give a counterexample.)

Question 3. Suppose that the sequence \((x_n) \) converges to 4. Prove carefully that \((\sqrt{x_n}) \) converges to 2. (Check also that for sufficiently large \(n \), \(\sqrt{x_n} \) is defined, i.e. \(x_n \) is non-negative.)

For your proof, the identity \((\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b}) = a - b\) will be helpful.

Question 4. (a) Suppose that the sequence \((x_n) \) converges to \(A \), the sequence \((y_n) \) converges to \(B \), and \(x_n \leq y_n \) for every \(n \). Prove that \(A \leq B \).

(b) Suppose that, as in part (a), \(x_n \to A \), \(y_n \to B \), but now \(x_n < y_n \) for every \(n \). (The inequality is strict.) Give an example showing that the equality \(A = B \) is possible.