
MAT 319, Spring 2012
Solutions to HW 10

1.

(a) Prove that a constant function is di�erentiable at any point. Find its derivative.
Let f(x) = c for all x. Let a ∈ R. For x 6= a,

f(x)− f(a)
x− a

=
c− c
x− a

= 0.

Therefore, f ′(a) = limx→a
f(x)−f(a)

x−a exists, and is equal to 0.

(b) Suppose that f is di�erentiable at a. Arguing from de�nitions, prove that the function g(x) =
3f(x) + 2 is di�erentiable at a.
For x 6= a,

g(x)− g(a)
x− a

= 3
f(x)− f(a)

x− a
.

Since f ′(a) exists, and so limx→a
g(x)− g(a)
x− a

= 3 limx→a
f(x)− f(a)

x− a
= 3f ′(a). g is di�erentiable

at a.

2.

(a) Suppose that g(x) is di�erentiable at a, and g(a) 6= 0. Arguing from de�nitions, prove that the
function h(x) = 1

g(x) is di�erentiable at a, and �nd its derivitive.

Since g is di�erentiable at a, it is also continuous at a. Therefore, since g(a) 6= 0, there is a
neighborhood around a where g is never 0. For x 6= a in this neighborhood,

h(x)− h(a)
x− a

=
1

x− a

(
1

g(x)
− 1

g(a)

)
=

1

x− a

(
g(a)− g(x)
g(a)g(x)

)
= −g(x)− g(a)

x− a
1

g(a)g(x)
.

Since g is continuous at a and g(a) 6= 0, limx→a
1

g(a)g(x) = 1
g(a)2 . Also, since g is di�erentiable at

a, limx→a
g(x)−g(a)

x−a exists. Therefore,

lim
x→a

h(x)− h(a)
x− a

= − g
′(a)

g(a)2

is well-de�ned.

(b) Using part (a) and the product rule, prove the quotient rule: if f , g are di�erentiable at a, then
f
g is also di�erentiable at a, and(

f

g

)′
(a) =

f ′(a)g(a)− f(a)g′(a)
(g(a))

2 .

Let h = 1
g , as in part (a), so that f

g = fh. Then applying the product rule, followed by the result

of part (a) yields:

(fh)
′
(a) = f ′(a)h(a) + f(a)h′(a)

= f ′(a)

(
1

g(a)

)
+ f(a)

(
− g′(a)

(g(a))
2

)

=
f ′(a)g(a)− f(a)g′(a)

(g(a))
2 .
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3.

(a) Using the product rule and induction, show that (xn)
′
= nxn−1 for all natural n.

First, for the base case, take n = 1. The derivative of x at a point a is given by

lim
x→a

x− a
x− a

= 1,

so x′ = 1, as desired.
Now assume that for some natural number k,

(
xk
)′

= kxk−1. We use the product rule and the
base case to take the derivative of xk+1:(

xk+1
)′

=
(
xkx

)′
=

(
xk
)′
x+ xkx′

= kxk−1x+ xk1

= kxk + xk

= (k + 1)xk

as desired. Therefore, the claim is proved by induction.

(b) Using question 2, �nd (with proof)
(
x−5

)′
.

x5 has derivative 5x4. By question 2(a), 1
x5 is di�erentiable when x 6= 0, and

(
x−5

)′
= − 5x4

(x5)
2 = −5x4

x10
= −5x−6.

When x = 0, x−5 is unde�ned, and so it is not di�erentiable there.

4. (28.7) Let f(x) = x2 for x ≥ 0 and f(x) = 0 for x < 0.

(a) Sketch the graph of f .

(b) Show that f is di�erentiable at x = 0.

For x < 0, f(x)−f(0)
x−0 = 0

x = 0. Therefore,

lim
x→0−

f(x)− f(0)
x− 0

= 0.

For x > 0, f(x)−f(0)
x−0 = x2

x = x. Therefore,

lim
x→0+

f(x)− f(0)
x− 0

= lim
x→0+

x = 0.

Therefore, limx→0 f(x) = 0. f ′(0) = 0.

(c) Calculate f ′ on R and sketch its graph.
If a < 0, we can �nd a δ-neighborhood of a, consisting entirely of negative numbers. Take
δ = −a > 0, for instance. On this neighborhood, f ≡ 0. Restricting our attention to this
neighborhood, we can calculate:

f ′(a) = lim
x→a

f(x)− f(a)
x− a

= lim
x→a

0

x− a
= 0.

If a > 0, we can �nd a δ-neighborhood of a, consisting entirely of positive numbers. On this
neighborhood, f(x) = x2. Restricting our attention to this neighborhood, we can calculate:

f ′(a) = lim
x→a

f(x)− f(a)
x− a

= lim
x→a

x2 − a2

x− a
= lim

x→a
x+ a = 2a.
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Therefore,

f ′(x) =

{
2x if x ≥ 0

0 if x ≤ 0.

(Like continuity, di�erentiability is a local property. Whether or not a function is di�erentiable
at a point is only dependent on the behavior in a small neighborhood around the point.)

(d) Is f ′ continuous on R? di�erentiable on R?
f ′ is continuous on R. Following question 1 in homework 8, f ′ is gotten by gluing together two
continuous function at x = 0, and both functions agree at this point, so f ′ is continuous.
f ′ is di�erentiable at any point a 6= 0. (f is equivalent to a di�erentiable function in a neighbor-
hood of these points. See the comment at the end of the last problem.) f ′ is not di�erentiable,
however, at a = 0. To see this, note that

lim
x→0−

f ′(x)− f ′(0)
x− 0

= lim
x→0−

0

x
= 0

while

lim
x→0+

f ′(x)− f ′(0)
x− 0

= lim
x→0+

2x

x
= 2;

so limx→0
f ′(x)−f ′(0)

x−0 is unde�ned.

5. (28.8) Let

f(x) =

{
x2 if x ∈ Q
0 if x /∈ Q.

(a) Prove that f is continuous at x = 0.
Let ε > 0. Set δ =

√
ε. Suppose |x| < δ. If x /∈ Q, then |f(x)| = 0 < ε. If x ∈ Q, then

|f(x)| =
∣∣x2∣∣ < δ2 < ε. In either case, |f(x)| < ε, so f is continuous at 0.

(b) Prove that f is discontinuous at all x 6= 0.
As usual, I will prove discontinuity using the sequences de�nition. Let (rn) be a sequence of
rationals converging to x, and let (sn) be a sequence of irrationals converging to x. Then (f(rn)) =(
r2n
)
→ x2, while (f(sn)) = (0)→ 0. Since x2 6= 0, f is discontinuous at x.

(c) Prove that f is di�erentiable at x = 0.

We must prove that limx→0
f(x)−f(0)

x−0 exists. We will prove that it equals 0. Let ε > 0. Set

δ = ε. Assume 0 < |x| < δ. If x ∈ Q, then
∣∣∣ f(x)x

∣∣∣ = ∣∣∣x2

x

∣∣∣ = |x| < δ = ε. If x /∈ Q, then∣∣∣ f(x)x

∣∣∣ = ∣∣ 0x ∣∣ = 0 < ε. This proves our claim.
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