
MAT 319, Spring 2012
Solutions to HW 1

1. On the real line, sketch ε-neighborhoods of A = −1 for ε = 3, ε = 1, ε = 1/2.
For each of these neighborhoods, determine whether it contains points x = 2, y = −2, z = 1, t = −1/2,
v = 1/2.

When ε = 3, the ε-neighborhood is the open interval (−4, 2), so y, z, t, v are contained in the neighbor-
hood, but x is not.
When ε = 1, the ε-neighborhood is the open interval (−2, 0), so t is contained in the neighborhood
while x, y, z, v are not.
When ε = 1/2, the ε-neighborhood is the open interval (−3/2,−1/2), so none of the points are con-
tained.

2. Consider the sequence (sn), where

sn =

{
n if n ≤ 100

2 if n > 100.

Does this sequence converge? Prove your answer.

This sequence converges to 2. There are two ways to prove it.

1) We have to show that every neighborhood of A = 2 contains a tail of (sn). But since every
neighborhood contains its center, the point A = 2 itself, it is clear that every neighborhood will
contain the tail (s101, s102, s103, . . . ).

2) For an epsilon-proof, let ε > 0 be arbitrary given number. Then for all n > 100, sn = 2, so in
particular, |sn − 2| = 0 < ε.

3. Determine whether the following sequences converge. If so, �nd the limits. Prove your answers.
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(a) the sequence (xn), where xn = 1
n+17 .

We prove that the sequence converges, and its limit is 0. This can be shown in several slightly
di�erent ways.

1) For a neighborhoods-and-tails argument, we notice that our sequence
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looks like the familiar ( 1n ) sequence, with a few �rst terms thrown away. We know that ( 1n )
converges to 0, in other words, that every neighborhood of 0 contains a tail of ( 1n ). But this
guarantees that the �corresponding� tail of (xn) also lies in the given neighborhood.

2) For an epsilon-proof, let ε > 0. To establish convergence, we must �nd N such that |xn| < ε

for all n > N . Let N =
1

ε
− 17. Then if n > N ,

|xn| =
1

n+ 17
<

1

N + 17
=

1
1
ε − 17 + 17

= ε.

This concludes the proof. As a side note, we could just as easily have taken N to be anything
larger than this, in particular, N = 1

ε . With this choice, the computation reads:

|xn| =
1

n+ 17
<

1

n
<

1

N
= ε.

(b) the sequence (yn), where

yn =

{
0 if n = 17

1
n−17 otherwise

This sequence also converges, with limit 0.

1) For a neighborhoods-and-tails argument, notice that even though the few �rst terms in our
sequence look �weird�, after a while we are just getting the familiar sequence ( 1n ):
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Since any given neighborhood of 0 contains a tail of ( 1n ) (because we know that ( 1n ) converges to
0), we can �nd the corresponding tail of (yn) contained in the given neighborhood.

2) Epsilon-proof: let ε > 0. Let N = 1
ε + 17 > 17. Then if n > N ,

|yn| =
1

n− 17
<

1

N − 17
= ε,

as desired. Note that we could not take N = 1
ε because

1

n− 17
>

1

n
.

4. Suppose that the sequence (xn) converges to 0. Prove that the sequence

x1, 0, x2, 0, x3, 0, x4, 0, . . . ,

constructed by alternating the terms of the sequence (xn) with zeroes, also has limit 0.

1) Here, a neighborhoods-and-tails proof is easier. Given a neighborhood of 0, we must show that
it captures some tail of our sequence. But since limxn = 0, there is a tail of (xn) contained in the
given neighborhood. Also, 0 is always contained in any neighborhood of 0. Thus, once the required
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tail of (xn) starts, we can be sure that the corresponding tail of our sequence is also in the given
neighborhood.

2) Finding N for epsilon requires more formulas. The sequence in question can be de�ned by

an =

{
xn+1

2
if n is odd

0 if n is even.

Let ε > 0. Since (xn) converges to 0, there exists a number N such that if n > N , then |xn| < ε. Now
suppose n > 2N , so that n+1

2 > N .

If n is even, then |an| = 0 < ε. If n is odd, then |an| =
∣∣∣xn+1

2

∣∣∣ < ε. Thus, |an| < ε for all n > N .

Hence, (an) converges to 0.

5. Let (xn) and (yn) be two sequences converging to 0. Consider a new sequence where xn's and yn's
alternate:

x1, y1, x2, y2, x3, y3, x4, y4, . . .

Prove that this sequence converges to 0.

1) Neighborhoods-and-tails are probably easier here, too. Given any neighborhood of 0, we can �nd
a tail of (xn) contained in that neighborhood and a tail of (yn) contained in that neighborhood. The
problem is that we would like to put those tails together, but they might start at di�erent places, if
we have an N -tail for (xn) and an M -tail for (yn). To be in the given neighborhood, we have to make
sure that both tails have started. For this, just take a tail where the indices for both (xn) and (yn) are
greater than the larger of M and N .

2) If you want to an epsilon-proof, the sequence in question can be de�ned by

an =

{
xn+1

2
if n is odd

yn/2 if n is even.

Let ε > 0. Since (xk) converges to 0, there exists Nx such that if k > Nx, then |xk| < ε. Similarly,
we can �nd Ny such that if k > Ny, then |yk| < ε. Let N = 2max {Nx, Ny}, and suppose n > N .

If n is odd, then n+1
2 > N+1

2 > 2Nx

2 = Nx, so |an| =
∣∣∣xn+1

2

∣∣∣ < ε. If n is even, then n
2 > Ny, so

|an| =
∣∣yn/2∣∣ < ε. Thus, in either case, |an| < ε. Therefore, the N -tail is entirely contained within the

ε-neighborhood of 0, and (an) converges to 0.
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