
MAT 311 Introduction to Number Theory

Problem Set 9
Solutions

Problem 1 sec 7.1 Just divide, reversing the fractions and applying the division algo-
rithm as you go along:

17
3

= 5 +
1

3/2
= 5 +

1
1 + 1/2

;

other numbers are even easier.

Problem 3 sec 7.1 Just compute.

Problem 5 sec 7.1 Using induction by n, prove that 〈a0, a1, . . . an〉 > 〈a0, a1, . . . an + c〉
when n is odd, but 〈a0, a1, . . . an〉 < 〈a0, a1, . . . an + c〉 when n is even. Check the base of
induction for n = 1 and n = 2. For the induction step, increase n by 2 (to keep the same
parity). Use the fact that

〈a0, a1, . . . an+2〉 = a0+
1

a1 + 1
〈a2,a3,...an+2〉

and 〈a0, a1, . . . an+2+c〉 = a0+
1

a1 + 1
〈a2,a3,...an+2+c〉

;

since 〈a2, a3, . . . an+2 + c〉 and 〈a2, a3, . . . an+2 + c〉 contain two terms fewer, the induction
hypothesis applies, and the first expression is less then the second if n is odd (or greater
if n is even). For the case n odd, we then see that

a1 +
1

〈a2, a3, . . . an+2〉
< a1 + 〈a2, a3, . . . an+2 + c〉,

and
a0 +

1
a1 + 1

〈a2,a3,...an+2〉
> a0 +

1
a1 + 1

〈a2,a3,...an+2+c〉
.

For n even the inequalities work the other way round.

Problem 3 sec 7.3 (b) The value of an infinite continued fraction 〈a0, a1, a2, . . . 〉 is equal
to

ξ = lim〈a0, a1, . . . an〉 = lim〈a0, a1, . . . an+2〉 = a0 +
1

a1 + 1
lim〈a2,a3,...an〉

.

From the periodic pattern in the fraction, it follows that

ξ = 1 +
1

2 + 1
ξ

.

This gives the quadratic equation 2ξ+2 = ξ(2ξ+1), or 2ξ2−2ξ−1 = 0. Solving at taking
the positive root, we find that ξ = 1+

√
3

2 .
Part (c) is similar, (a) is easier; (c) and (d) can be reduced to (b), since, for example,

〈1, 3, 1, 2, 1, 2, . . . 〉 = 1 +
1

3 + 1
〈1,2,1,2,... 〉



Binary expansions question (a) The value of a binary number .a1a2a3 . . . with digits
a1, a2, . . . that are all equal to 0 or 1 is the infinite sum

a1

2
+
a2

22
+
a3

23
+
a4

24
+ . . . .

(check that this gives a finite answer!) To construct the binary expansion of a number
0 < ξ < 1, set a1 = 0 if ξ < 1/2, a1 = 1 if ξ ≥ 1/2, then a2 = 0 if ξ − .a1 < 1/2, a2 = 1 if
ξ − .a1 ≥ 1/2, then a1 = 0 or 1 depending on ξ − .a1a2, and so on. (We ignore the issue
of non-unique expansions of the sort 1/2 = .01111111... = 0.1 , cf 0.39999999 = 0.4 for
decimals.)

(b) The value of a finite binary fraction .a1a2a3 . . . an is

a1

2
+
a2

22
+
a3

23
+ . . .

an
2n

=
a1 2n−1 + a2 2n−2 + · · ·+ an

2n
,

which is a rational number whose denominator (in lowest terms) is a power of 2. Con-
versely, given a rational number of the form p

2n , it can be written as a finite expansion
whose n digits are just the binary digits of p.

(c) The answer is the same as for the decimal case: the numbers with periodic expansions
are exactly the rationals. To see this, write

.b1 . . . bma1a2 . . . aka1a2 . . . aka1a2 . . . ak · · · =
b1 2n−1 + b2 2m−2 + · · ·+ bm

2m

+
a1 2k−1 + a2 2k−2 + · · ·+ ak

2k+m
+
a1 2k−1 + a2 2n−2 + · · ·+ ak

22k+m
+ . . . ,

and simplify

a1 2k−1 + a2 2k−2 + · · ·+ ak
2k+m

+
a1 2k−1 + a2 2n−2 + · · ·+ ak

22k+m
+ · · · =(

a1 2k−1 + a2 2k−2 + · · ·+ ak

) (
1

2k+m
+

1
23k+m

+
1

23k+m
+ . . .

)
by summing the geometric series.

For the converse (showing that every rational has a periodic expansion), observe that in
the expansion process for p/q, we repeatedly (for increasing n) divide 2np by q and then
continue with the remainders. Because there are only finitely many remainders mod q, one
of the remainders will at some point repeat, and then the process will become periodic.

Details can be found (at least for the decimal case, which is very similar) in many
analysis textbooks (for example Apostol). This material is not included in the final exam.


