
MAT 311 Introduction to Number Theory

Problem Set 7

Solutions

Problems 8 and 10 sec 2.8 are easy, just use Thm 2.37 from the book (look at its proof
for question 10).

Problem 18 sec 2.8. If p is an odd prime, g and g′ primitive roots mod p, show that
gg′ can’t be a primitive root.

Solution. If g and g′ are primitive roots, then gp−1 = (g′)p−1 = 1 but g(p−1)/2 =

(g′)(p−1)/2 = −1. It follows that (gg′)(p−1)/2 = g(p−1)/2(g′)(p−1)/2 = 1, so gg′ is not a
primitive root.

Problem 20 sec 2.8. Of 101 integers in a complete residue system mod 1012 that are
≡ 2 mod 101, which one is not a primitive root mod 1012?

Solution. The problem seems to suggest that 2 is a primitive root mod 101. Let’s check
this: we need to make sure that 2d is not congruent to 1 for any d < 100 = φ(101). But
such a d would necessarily be a divisor of 20 or of 50, so we need to check that 220 and 250

are not 1 mod 101. Compute 210 = 1024 ≡ 14 mod 101, 220 ≡ 142 = 196 ≡ −6 mod 101,
250 ≡ (220)2210 ≡ 36 · 14 = 504 ≡ −1 mod 101.

Now follow the strategy from the proof of Thm 2.39. If x ≡ 2 mod 101, then x100 ≡
2100 ≡ 1 mod 101; moreover, for any smaller d|100 xd ≡ 2d will not be congruent to 1
since 2 is a primitive root. Since 101 is prime, φ(1012) = 100 · 101, the order of such an x
mod 1012 can only equal to 100 · 101 (in which case we get a primitive root) or to 100 (in
which case we don’t). So we are looking for x ≡ 2 mod 101 such that x100 ≡ 1 mod 1012.
This means that x lifts the solution a = 2 of x100 ≡ 1 mod 101 to a solution of x100 ≡ 1
mod 1012. But we know how to lift roots from sec 2.6: write x = 2 + 101t, look for t that
solves the congruence

tf ′(a) ≡ −
f(a)

101
mod 101,

where f(x) = x100 − 1. So f ′(a) = 100 · 299 ≡ −299 mod 101, f(a) = 2100 − 1, the
congruence to solve becomes

−299t ≡ −
2100 − 1

101
mod 101.

Multiplying by −2 and using Fermat’s, we get that

t ≡
2101 − 2

101
mod 101.

Then 101t ≡ 2101 − 2 mod 1012, and x = 2 + 101t ≡ 2101 mod 1012. Let’s stop here:
evaluating 2101 mod 1012 seems (to me) a formidable task, even with all the numerical
techniques. (But if you use a calculator, you get t = 83, same as the answer in the book!)

Problem 22 sec 2.8. Let g be a primitive root mod p. Prove that

(p − 1)! ≡ g · g2 . . . gp−1 ≡ gp(p−1)/2 mod p



and get a proof of Wilson’s thm from this.

Solution. Both g, g2, . . . gp−1 and 1, 2, . . . p − 1 form a reduced system mod p, so the
products of all elements in each system must be congruent to each other. This gives the
first congruence above; the second is just the summing up the exponents, 1+2+. . . (p−1) =

p(p − 1)/2. For Wilson’s thm, note that g(p−1)/2 ≡ −1 since g is a primitive root; then
(p− 1)! ≡ gp(p−1)/2 ≡ (−1)p ≡ −1 mod p if p is an odd prime. (For p = 2, check Wilson’s
directly.)

Problem 37 sec 2.8. Show that n does not divide 2n − 1 for n > 1.

Solution. Since 2n−1 is odd, the statement is clearly true for n even. Suppose that some
n odd divides 2n−1, and let p be the least prime divisor of n. Then we have (p−1, n) = 1:
if not, we can pick a prime divisor of (p − 1, n), and it would be a prime divisor of n that
is smaller than p. Now, let d denote the order of 2 modulo p. Then d divides φ(p) = p−1.
On the other hand, since n divides 2n − 1, and p|n, we have that 2n ≡ 1 mod p. This
implies that d divides n. But then d divides (p − 1, n) = 1, so d = 1, but 2 ≡ 1 mod p is
a contradiction.


